To bardzo miło, że pan doktor Tomasz Rożek zrobił odcinek matematyczny. W dniu liczby pi zdecydowanie wypadało :). Są jednak pewne nieścisłości. Mianowicie, po pierwsze, cóż to znaczy, że nie poznamy dokładnej wartości liczby pi z powodu jej niewymierności? Liczby niewymierne nie dają się przedstawić w systemie dziesiątkowym z wykorzystaniem skończonego ciągu cyfr. No ale to nie jest jednoznaczne z "poznaniem dokładnej wartości" liczby. Pierwiastek z dwóch jest również niewymierny, a wystarczy wziąć kwadrat o boku 1 i jego przekątna będzie jak najbardziej jemu równa. I liczba będzie miała bardzo konkretną, namacalną wartość. Po drugie (detal) trudno mówić o obwodzie okręgu, skoro to jest linia. Mówimy, że okrąg ma długość. Po trzecie, w kwestii wzoru Eulera, to z pewnością należy podkreślić czym jest liczba i (jednostka urojona). No i liczba (a nie cyfra, cyfra to tylko znak!) 1, to przede wszystkim element neutralny mnożenia, a jej aspekt kardynalny ma tutaj znaczenie drugorzędne.
I tu jest ukryta odpowiedź na pytanie, dlaczego pociąg jak jedzie to stuka? No po pociąg ma koła, a wzór na obwód koła to 2兀r. A pi, jak wiadomo, to 3 z hakiem. I to ten hak stuka.
@@januszbanach2131 interesowało, ale to była po pierwsze podstawówka, a po drugie, nie wpadłbym poprostu na to, bo myślałem że to poprostu stała, która taka jest bo jest
Długości są skończone, ale zawsze w obwodzie koła lub średnicy musi być nieskończona ilość miejsc po przecinku. Gdyby było inaczej, oznaczałoby to że pi jest liczbą racjonalną, tj. liczbą którą można przedstawić dokładnie w postaci ułamka, co jest niemożliwa. Oznacza to jedną z dwóch rzeczy: albo średnica lub obwód są podane w zaokrągleniu albo nie mamy do czynienia z prawdziwym kołem tylko formą geometryczną mocno przybliżoną do niego.
Jeśli weźmiesz dwie dowolne różne liczby to zawsze między nimi będzie nieskończoność liczb, choćby były nieskończenie duże lub nieskończenie małe. Nieskończoności te choć są nieskończone, są różnej wielkości (nazywanej mocą zbioru) Temat nieskończeności jest mega ciekawy, a dobrze zrozumiany potrafi zmienić myślenie, choćby o czymś takim jak koncept wiecznego życia po śmierci
@@gooral9438 Proszę nie kłamać tutaj szanowny Panie, ja sobie na kartce zapisałem dwie liczby, jedna z lewej , druga z prawej strony kartki i byłem w stanie do środka tylko 15 liczb innych zmieścić, sprawdzone empirycznie, zaorane!
Trochę mi tu zabrakło faktycznej odpowiedzi "skąd się wzięła liczba Pi". Pamiętam że na studiach wyliczanie pola koła bez potrzeby korzystania z Pi bardzo mi otworzyło oczy co do tego ile pracy wykonali matematycy żebyśmy byli tu gdzie jesteśmy.
A czy mógłby Pan mi przybliżyć jak Pan oblicza pole powierzchni koła bez liczby PI . Samo PI -- to nazwa umowna , ale wartość PI -- to już matematyczna , więc niech się nazywa jak chce . Natomiast samo wyliczenie liczby PI , czyli skąd się to wzięło , jest podane w materiale , długość okręgu podzielona przez średnicę tego okręgu .Albo koła , jak zwał ,tak zwał . A jak to pierwsi liczyli , to nie wiem , ale wyliczyli . Pozdrawiam . to ciekawe tematy .
Dziękuję za odcinek. Zabrakło w nim dość ważnego elementu - JAK wylicza się liczbę Pi na komputerze bo przecież komputer obliczając tysięczną czy milionową cyfrę po przecinku nie dokonuje pomiaru i jej nie uściśla mechanicznie...
No właśnie,mam wrażenie że to jest to jakaś stała cecha filmików na tym kanale, że bardzo często brak jest takich zupełenie oczywistych elementarnych informacji które wydawało by się, że powinny się znaleźć, a są samym sednem danego zagadnienia a wręcz kwintesencją. Każdy wie co to jest liczba pi i w talkim filmie musi się znaleźć elementarna wiedza o niej, a która nie jest przekazywana w szkole. A tutaj autor pokazuje w zasadzie tylko to, co każdy zna ze szkoły plus kilka mniej istotnych rzeczy.
兀 należy przyrównywać do średnicy (d) a nie do promienia (r). Wtedy wszystko staje się proste. Szkolne formułki bazują na promieniu (r) i zaciemniają tą prostą zależność. I tak na przykład obwód to 兀d. Niewymierność bierze się stąd, że nie jesteśmy w stanie przyrównać prostej do łuku. Zawsze zostanie jakaś reszta (łuk). Podobne zjawisko mamy w przypadku przekątnej kwadratu i innej liczby niewymiernej - pierwiastka z dwóch. Przyrównując prostą do przekątnej musimy rozrysować schodki. I tu również zawsze zostaje jakaś reszta. Dobrze to widać w programach graficznych. Wystarczy narysować okrąg czy przekątną w Paincie, żeby to zauważyć.
Da się zmierzyć precyzyjniej przy pomocy linijki. Punkt na kole ustawić równo z punktem zerowym i przetoczyć wzdłuż (jak po użytym sznurku). Błąd odczytu wyniesie maksymalnie dwa milimetry (jedna działka, jeden milimetr na zerze i drugie tyle przy końcu). Warunkiem takiej dokładności jest precyzyjne poprowadzenie koła i odpowiednio długa linijka. Jak na domowe warunki, całkiem nieźle. Czynniki mogące pogorszyć pomiar: krótka linijka (konieczność przekładania dodaje sumujące się błędy odczytu), kiepskiej jakości linijka (urządzenia pomiarowe też obarczone są błędem), przesunięcie koła w czasie toczenia (niedokładność wykonania pomiaru). Bardzo dobry materiał. Może częściej coś "z domowego laboratorium"?
Jestem miłośnikiem Pana programów i mam prostą metodę na pole koła bez liczby pi. Wystarczy od kwadratu średnicy np. 7*7=49 odjąć VAT to działa. Pozdrawiam
A co jeśli "w podziale kuli" ukryły się wszystkie inne litery alfabetu greckiego? Jeśli w kulę można wrysowac a także wyciąć dowolną figurę i dowolną bryłę geometryczną to oznacza że kula może przyjąć dowolny kształt czyli kula może przybrać dowolną postać. Kształt + postać = MOC. Wierzę że moc pochodzi z kuli.
Bardzo pięknie i ładnie opowiedziane o liczbie, może brakuje tylko aby materiał był kompletny jaki jest sposób na obliczenie tej liczby matematyczny a nie na podstawie okręgu i średnicy, przecież superkomputer nie mierzył tych wartości tylko w inny sposób obliczył liczbę. No właśnie w jaki?
na studiach informatycznych jest taki przedmiot metody numeryczne i przez niego dużo osób odpada ze studiów, ale ogólnie przedmiot jest fajny, bo wlasnie wyjasnia, jak komputer liczy takie rzeczy jak pi, przybliżenia, całki itp. Czyli jak komputer liczy rzeczy nieskończone, skoro nie może operować na nieskończonościach. ogólnie na liczbę pi pokazywali nam kilka metod ale taką najprostszą, którą ogarnie nawet osoba z liceum jest metoda Monte Carlo: "Metodę tę śmiało można określić niezbyt matematyczną. Mianowicie metoda ta opiera się na liczbie Ludolfina. Jest to liczba rzeczywista i niewymierna (tak samo jak π) i reprezentuje stosunek długości obwodu koła do jego średnicy (tj. wartość liczby π). Jednak do wyznaczania jej wartości używa się... losowania. Mianowicie, aby wyznaczyć liczbę π tą metodą najpierw należy narysować kwadrat jednostkowy, następnie wpisać w niego koło. Następnie przeprowadza się n prób. W każdej próbie losuje się pewien punkt, który należy do kwadratu. W trakcie prób należy zliczyć ile punktów leżało zarówno w kwadracie jak i w kole. Następnie w celu obliczenia wartości liczby π wystarczy skorzystać ze wzoru 4T/n , gdzie T - ilość punktów leżąca w kole, a n - ilość prób." czyli ogólnie mając bardzo dużo zasobów można zrobić biliony losowań i wyliczyć pi super dokładnie, ale to nie jest najwydajniejsza metoda. właściwie to jest prymitywna. dziś używa się Chudnovsky algorithm. na yt: Calculating π by hand: the Chudnovsky algorithm
@@Hana-gu7pt o tej liczbie możnaby książki pisać. Znam gościa co pisał pracę magisterską o liczbie pi, to , że występuje ona we wzorach na koło to dopiero początek, nic nie znaczący początek tej liczby. W normalnej matematyce nikt liczby pi nie dzieli, mnoży...itd ,zapisuje się jedynie symbol. Czy ktoś widział kiedyś np dzielenie przez pi ? Jest to niemożliwe. Dlatego nie podniecajcie się tak tą liczbą. Wystarczy jedynie spróbować matematyki wyższej a zobaczycie czym jest ta liczba. Nigdy do końca nie zrozumiecie tej liczby,jest to niemożliwe
14.03 - 3.14 moje urodziny! ale mam piękną datę - również tego dnia zmarł wspaniały wizjoner, astrofizyk Stephen Hawking. Moja szczęśliwa liczba - nie inaczej - liczba pi :D
0:58 Oczywiście, że jest możliwe :) Wystarczy toczyć koło z zaznaczonym pkt. na obwodzie wzdłuż owej linijki na płaskiej powierzchni. Np. na takim stole, na jakim leży filmowy sznurek. Wynik nie będzie może perfekcyjny, ale na potrzeby eksperymentu szkolnego wystarczy.
ale w dalszym ciągu nie dowiedziałem się tak na prawdę skąd się wziełą liczpa PI i kto ją odkrył. WIemy, że wszystkie cywilizacje które budowały megalityczne budowle na ziemi tysiące lat temu musiał znac PI i FI
Muszę dodać, że w szkole podstawowej właśnie pani z matematyki zadała nam takie zadanie. Mieliśmy sznurkiem zmierzyć obwody doniczek w domu i podzielić je przez średnicę. Odkrycie liczby Pi nie miało może coś wspólnego z problemem kwadratury koła? Starożytni nie mogli obliczyć powierzchni koła i kombinowali z kołem opisanym i wpisanym w kwadrat.
Ciekawym sposobem pomiaru powierzchni koła jest, wyznaczenie powierzchni trójkąta prostokątnego o podstawie równej promieniowi koła i wysokości równej obwodowi. Sposób ten pokazuje piękno idei całkowania, a zarazem jest prosty do pomiaru w rzeczywistości. A co najciekawsze nie wymaga znajomości liczby pi
Wzór na PI. PI=sin(180/n) * n , to znaczy że musimy kąt 180 stopni ( czyli pół okręgu ) podzielić na dowolną ilość części i z tak powstałego kąta obliczyć sinus tego kąta. Następnie musimy pomnożyć wynik przez liczbę , przez jaką był podzielony kąt 180 stopni. Im będzie większa wartość n , tym dokładniejszy będzie wynik.
3:41 UWAGA! POWAŻNY BŁĄD (choć raczej czysto przypadkowy). Okrąg nie ma obwodu! Okrąg ma długość. Okrąg jest obwodem koła! Wzór 2pir to jednocześnie wzór na długość okręgu i na obwód koła (bo to jedno i to samo ale rozróżnienie pojęcia koła i okręgu jest bardzo ważne). W skrócie: Okrąg jest pusty w środku, tzn. nie ma powierzchni (jak np. w przybliżeniu obrączka ślubna). Okrąg jest figurą geometryczną PŁASKĄ JEDNOWYMIAROWĄ. Koło posiada powierzchnię, właściwie jest powierzchnią ograniczoną okręgiem w skład której wchodzi także okrąg (jak np. moneta). Koło jest figurą geometryczną PŁASKĄ DWUWYMIAROWĄ. Pozdrawiam serdecznie.
Moim zdaniem dobrym pomysłem jest zrobienie kiedyś rozszerzenia w postaci odcinka o liczbach zespolonych. Temat na pewno uświadamiający i rozszerzający perspektywę spojrzenia na matematykę :)
Jedną z najbardziej fascynujących rzeczy o liczbie Pi, jest to że jest to liczba "transcendentalna" czyli nie wynika z żadnego równania algebraicznego rodzaju ax^n+bx^(n-1)....+k, co oznacza w zasadzie że ta liczba nie może zostać sztucznie "skonstruowana" na podstawie algebry--po prostu musi istnieć niezależnie od niej. W sumie liczby transcendentalne stanowiłyby świetny materiał do kolejnego odcinka. Tak naprawdę prawie wszystkie liczby w układzie liczb rzeczywiste są transcendentalne, ponieważ liczby transcendentalne stanowią łącznie zbiór o mocy "nieprzeliczalnej nieskończoności", podczas gdy liczby algebraiczne są jedynie przeliczalne tak jak liczby naturalne, jednak mają dużo większe zastosowanie w matematyce. Ponadto, jest bardzo trudno udowodnić że dana liczba jest liczbą transcendentalną, dowody w tym zakresie są zwykle bardzo skomplikowane. Transcendentalności pi udowodniono właśnie na podstawie równania Eulera, skoro wcześniej już udowodniono nietylko że e również jest liczbą transcendentalną, ale w sensie ogólnym każdy iloczyn w równaniu e^x, kiedy x to liczba algebraiczna. Skoro i jest liczbą algebraiczną (choć też "urojoną") oznaczało to że pi musi być liczbą transcendentalną.
Metoda Monte Carlo fajnie obrazuje czym tak naprawdę jest liczba PI. Mamy okrąg o promieniu 1 i wpisany w to kwadrat o boku 2. Losujesz dużą ilość punktów x y i potem te punkty co są w okręgu zliczasz Pi=4 * punkty w okręgu/Wszystkie punkty Im więcej punktów tym dokładniejsze pi.
Pole powierzchni koła można by obliczyć mnożąc promień przez obwód, bo teoetycznie jeśli bysmy rysowali kreski jedna obok drugiej wzduż lini obwodu to bysmy w końcu zapełnili całego koło, czyli de facto długość takich kresek pomnożona przez długoś obwodu powinna dać pole powierzchni koło. Uwaga mówił to humanista
@@janzielinski6999 Owszem nie był, jak się jednak przywołuje wzory, to powinno się wytłumaczyć poszczególne składniki. Wzór bez objaśnienia jest jedynie zlepkiem nic nie znaczących znaków. Dla jednych i znaczy Amper dla innych to jednostka urojona.
Ojj... dowody pierwszego koła są z Polski. Waza z Bronocic, na której są rysunki wodzów na kołach sięga zdecydowanie późniejszego okresu niż w zapisach mezopotamskich...
To jest niesłychane. Autor filmu marnuje się na YouTubie. Powinien conajmniej lecieć w kosmos z tym programem. Albo do Bytomia. To najlepszy film naukowy internetu!
Pomyliłeś z trzema prawami Ohma: I: ciało rzucone na łoże, traci na oporze II : Ciało w ciemności traci na oporności III: ciało puszczone raz, puszcza się cały czas 🤣🤣🤣
Dr. Franc Zalewski w swoim filmie o systemie piętnastkowym z klasą obalił "Pi", słuszność systemu dziesiętnego i o dziwo ciąg Fibonacciego. Przedstawił na to miażdżące dowody w swoim referacie.
@@wagabunda2228 A zapoznałeś się z dowodami w referacie? Czysta matematyka, a nie teorie spiskowe. Nauka, matematyka polega na udowadnianiu teorii, a nie wierze.
w okolicy jest jedna kopalnia Uranu, wczoraj tam byłem, na razie nie wykryłem rudy Uranu, metrowym wiertłem obok kopalni robię odwierty i sprawdzam dozymetrem, czy na wiertle jest Uran, mam dwa zapasowe akumulatory do wiertarki, jeszcze nie udało mi się znaleźć próbki Uranu, dzisiaj kupiłem kolejne wiertło do wiercenia
To po prostu przesunięcie przecinka 16 razy w prawą stronę.. Nie wiem co to zmienia, możesz przesunąć ile chcesz. Jak przesuniesz bardziej to błąd będzie niższy i niższy
@@baranosiu oczywiście że są inne przybliżenia, ale te akurat są łatwe do zapamiętania. 355/113 łatwo zapamiętać zaczynając pisać od mianownika, 113355.
Przestrzeń jest nieskończona. Najdoskonalszy kształt w nieskończonej przestrzeni to kula. Kula to nieskończona ilość okręgów przesuniętych względem siebie wokół własnej osi. Jeśli podzielimy okręg przez jego średnicę to jaķąż inną liczbę moglibyśmy dostać niż nieskończoną jeśli przetrzeń jest nieskończona.Hehe...
P = π d S = π d↑2 / 4 P = 2 π r S = π r↑2 Czym różnią się te wzory - ano tym, że tych pierwszych używają inżynierowie, a tych drugich matematycy i humaniści. Bądź łaskaw zauważyć, że w praktyce promienia, na ogół, nie da się zmierzyć, zazwyczaj mierzymy średnicę (np. suwmiarką). Zrób test wśród znajomych i zapytaj ich o wzory na obwód i na powierzchnię koła - zobaczysz kto humanista, a kto prawdziwy inżynier.
Jest też liczba kwi. Liczba kwi to stosunek długości obwodu kwadratu do jego boku i jest stałą niezależnie od rozmiarów kwadratu. UWAGA podaję stałą matematyczną kwi: 4
Istnieje stała (niewymierna jak π) określająca stosunek przekątnej kwadratu do jego boku: d = a√2 (gdzie *d* to przekątna kwadratu, *a* to bok kwadratu)
Ale dziękuję, że mnie oświeciłeś, oświetliłeś i kompletnie ignorując sarkazm mojej wypowiedzi postanowiłeś zaryzykować publiczne potraktowanie mnie jako ignoranta aby wcielic się w rolę autorytetu w dziedzinie nobilitującej społecznie.
Więc jak go widzę to zasadniczo mam przed sobą dziesięć koncentrycznych okręgów ponumerowanych od zewnątrz do środka od 0 do 10 i targa mną niewysłowiona chęć aby gdzieś na przecięciu obwodu okręgu 7 z ramionami kąta wpisanego o wartości 60 stopni umieścić dwie ołowiane kulki z prędkością ok 900 m/s
Czy jak murarz stawia panu dom to uznaje pan za etycznie uzasadnione roztrząsanie jego zycia osobistego oraz moralnie i prawnie dozwolone grzebanie w jego prywatnych brudach a następnie uzyskiwanie z propagowania tych informacjii korzyści finansowych i materialnych? Czy gdybym nakręcił i zamieścił na YT materiał o tym z kim i jak barłożyła matka autora to uznałby, że to jest ok?
liczba pi moze się wiązać tez z hipotezą rimmana. dokladnie jeszcze nie zbadano znaczenia i roli liczby pi w definicji liczb pierwszych i gęstości ich występowania w układzie liczb nieskończonych. ale promień koła się wpisuje. tak czytałam.
Polecam weryfikować fakty, które Pan podaje, @NaukaToLubie. Co z wyliczeniami liczby Pi z 14.03.2019 albo ze stycznia 2020? Poza tym, tak jak inni piszą, łatwiej użyć miarki niż sznurka, a co do pola, to przy użyciu wagi aptekarskiej i proporcji do kwadratowego kawałka tej samej tektury można tez łatwo eksperymentalnie z jakimś przybliżeniem policzyc pole.
I wciąż w sumie nie wiem, skąd się wzięło 3.14(...). Dowiedziałem się głównie, że PI jest jakąś tam liczbą, która powstaje po podzieleniu obwodu przez średnicę koła. Ale skąd taka a nie inna liczba? Dlaczego nie np. 3 lub 4? Skąd taka jej dokładność? Skąd to się bierze? Jak to się oblicza do tylu miejsc po przecinku? Skąd wiemy, że akurat ta, a nie inna liczba, jest dokładna? Materiał na kolejne filmy?
No i dobrze. Kiedy mierzył Pan obwód tego koła to co, sznurek się Panu skończył, zabrakło czy jak? Bez użycia liczby pi określił Pan obwód koła. Trzeba po prostu znaleźć sposób jak liczyć coś takiego bez liczby pi. Liczba pi określa własności umysłowe ludzi. A tak swoją drogę to obwód Ziemi też oblicza się z użyciem liczby pi? To jaka ta Ziemia w końcu jest?
Jak komputery liczą PI? wrzuca się im obwód i średnicę jakiegoś losowego koła czy jest jakiś "wzornik" do tych obliczeń? jak dokładnie został zmierzony obwód takiego koła do obliczania tak dokładnych przybliżeń?
Ja używam liczby pi do jazdy na rowerze, pomaga mi przy dużych prędkościach. Wtedy bez problemu wyprzedzam innych kolaży którzy nie mają pojęcia o liczbie pi.
stosunek obwodu do średnicy jest stały a jego wartość nazwano Pi. zwykła proporcja. stosunek średnicy do obwodu też jest stały i wynosi 1/Pi. stosunek pola kwadratu to pola koła wpisanego/opisanego też jest stały a co za tym idzie stosunek pól tych dwóch kół też jest stały a to oznacza, że stosunek ich obwodów też musi być stały. magii żadnej w tym nie ma. jedyne co to w przypadku niektórych zależności, trudności w udowodnieniu tezy.
To taki paradoks : 1.jeżeli znamy dokładny obwód koła to nie możemy obliczyć dokładnej średnicy. 2 i na odwrót : jeżeli znamy dokładną średnicę nie jesteśmy w stanie obliczyć obwodu.
jak w starożytności mierzono cokolwiek co wymagało dokładności? Nie było miar, standaryzacji, wzorców. Nie dało się kupić miarki w markecie budowlanym. Zawsze mnie to zastanawiało - jak w takich warunkach powstawały skomplikowane wzory matematyczne 🤔
Pierwsze znaleziska koła? Przecież to na terenie dzisiejszej Polski odnaleziono najstarszy na świecie wizerunek pojazdu kołowego tzw. waza z Bronocic. Żarcik. Dobra robota. :)
Może odcinek o "fi", odniesieniu do ciągu Fibonacciego i rodzinie "złotych ciągów"? No i ciekawy temat odnośnie stałych, które trudno zdefiniować jako stałe dla fizyki (ujmijmy to jako umowne stałe). Tylko bez "teorii spiskowych", bo za dużo tego już w materiałach w sieci, bez powoływania się nawet na konkretne nazwiska z tytułami... A propos... Już zadałeś lekki kłam egiptologom, którzy twierdzą, że Egipcjanie w starożytności nie znali liczby "pi". Pozdrawiam serdecznie.
Ciekawe jak się liczy pi tak dokładnie? Przecież mierząc promień i obwód byłby duży błąd. Jak obliczyć dokładnie po, tzn skąd wziąć dokładne wymiary koła (obwód i promień). Przecież gdybyśmy nie znali dokładnie pi to obliczenie powierzchni znając promień byłoby niedokładne. Czy są inne metody jak wyliczono pi?
Zostało tutaj obliczone doświadczalnie "w przybliżeniu😉 Szukając innych metod dojdziemy do ciekawych wniosków zapewne, więc rozwijajmy swoje horyzonty, miast komuś dać wodze rzaczonych. Pozdrawiam serdecznie.
Jak zapamiętać liczbę pi z dwunastoma cyframi po przecinku ? W starej szkole posługiwano się takim oto wierszykiem : był, i jest i wieki sławionym ów będzie który ten obwód średnicą wymierzył. Działa do dzisiaj jak tabliczka mnożenia. ;)
Ale... Przecież i obwód i średnica koła są fizycznie ograniczone... Jakim więc cudem wartość jednego lub drugiego jest liczbą niewymierną? Istnieją w ogóle dwie liczby wymierne, z których dzielenia wychodzi ta właściwa liczba Pi?
Z radoscia patrze i slucham. Co prawda marzylo mi sie na nowo wrocic do Biochemii ale…. Matematyka to KROLOWA NAUK !!! Studia uwienczone mgr inz sprzed 1/2 century, EEEEH tam . DZIEKI STOKROTNE Kocham Nauke i juz.
Wiążąc pi z historią można zapamiętać dalsze jej przybliżenie aż do dziewiątego miejsca. 3,14 dalej 15 data przewrotu majowego 926 i data śmierci Stalina 53
Wystarczy rozkręcić to koło do prędkości bliskiej prędkości światła (mierząc prędkość obwodową tego koła), i cała ta liczba "pi" rozjeżdża się w "matematycznych szwach".
Mam mały niedosyt po obejrzeniu materiału. Jak w zasadzie jest liczona wartość liczby pi? Jaki algorytm za to odpowiada? Rozumiem, że już od dawna nie ma tu żadnego związku z okręgiem i jego obwodem. Jaka zależność lub jaki wzór pozwala obliczać pi na tak dużym poziomie dokładności o którym mowa w odcinku?
14 marca - 3,14 - nic dziwnego, że taki odcinek ;-)
dobre dobre
I mamy dzisiaj również rocznicę śmierci Stephena Hawkinga, odleciał w osobliwość
@@spythere wielu znanych ... Anna Jantar np
i mniej nieznanych ... jak każdego dnia
trzeba pamiętać, ale
mnie jednak zawsze się kojarzy z liczbą π
no shit
@@spythere oraz urodziny Einsteina
To bardzo miło, że pan doktor Tomasz Rożek zrobił odcinek matematyczny. W dniu liczby pi zdecydowanie wypadało :). Są jednak pewne nieścisłości. Mianowicie, po pierwsze, cóż to znaczy, że nie poznamy dokładnej wartości liczby pi z powodu jej niewymierności? Liczby niewymierne nie dają się przedstawić w systemie dziesiątkowym z wykorzystaniem skończonego ciągu cyfr. No ale to nie jest jednoznaczne z "poznaniem dokładnej wartości" liczby. Pierwiastek z dwóch jest również niewymierny, a wystarczy wziąć kwadrat o boku 1 i jego przekątna będzie jak najbardziej jemu równa. I liczba będzie miała bardzo konkretną, namacalną wartość. Po drugie (detal) trudno mówić o obwodzie okręgu, skoro to jest linia. Mówimy, że okrąg ma długość. Po trzecie, w kwestii wzoru Eulera, to z pewnością należy podkreślić czym jest liczba i (jednostka urojona). No i liczba (a nie cyfra, cyfra to tylko znak!) 1, to przede wszystkim element neutralny mnożenia, a jej aspekt kardynalny ma tutaj znaczenie drugorzędne.
To jest odcinek matematyczny dla nie-matematyków, więc przez przesady z tą "ścisłością"....
I tu jest ukryta odpowiedź na pytanie, dlaczego pociąg jak jedzie to stuka?
No po pociąg ma koła, a wzór na obwód koła to 2兀r.
A pi, jak wiadomo, to 3 z hakiem. I to ten hak stuka.
Musza Cie uwielbiac na imprezach.
No tak ale wiesz, zawsze szyny też mogły być złe.
@@mattpaturej90 Zaraz po chipsach ;)
Suchar znany już z czasów PRL, każdy kto dał like powinien iść do gułagu.
XDDD mój matematyk schizifrenik często to powtarzal w liceum XD
40 sekund i dowiedziałem się w końcu skąd bierzemy liczbe pi, czyli tajemnica której nikt mi nie powiedział przez 15 lat edukacji...
W szkole o tym mówili, nie uważało się
@@SlawomirBaj może u ciebie, u mnie napewno nikt nie trudził się na wyjaśnienie 😉
@@SlawomirBaj nie wszyscy chodzili do tej samej szkoły ;)
mogłeś też sam przekształcić wzór na obwód koła i otrzymać pi = obw / 2r, ale może Cię to nie interesowało po prostu?
@@januszbanach2131 interesowało, ale to była po pierwsze podstawówka, a po drugie, nie wpadłbym poprostu na to, bo myślałem że to poprostu stała, która taka jest bo jest
Zamiast akrobacji ze sznurkiem, można było rozłożyć taśmę mierniczą i po niej "przejechać" kołem.
Niesamowite, że mając dwie skończone długości, nie da się dokładnie obliczyć ich stosunku, nieskończoność w skończoności.
Ale za to da się obliczyć długość stosunku. Hmm.... chyba coś nie tak...
Długości są skończone, ale zawsze w obwodzie koła lub średnicy musi być nieskończona ilość miejsc po przecinku. Gdyby było inaczej, oznaczałoby to że pi jest liczbą racjonalną, tj. liczbą którą można przedstawić dokładnie w postaci ułamka, co jest niemożliwa. Oznacza to jedną z dwóch rzeczy: albo średnica lub obwód są podane w zaokrągleniu albo nie mamy do czynienia z prawdziwym kołem tylko formą geometryczną mocno przybliżoną do niego.
@@calyswiat92 racjonalna to z angielskiego, po polsku wymierna
Jeśli weźmiesz dwie dowolne różne liczby to zawsze między nimi będzie nieskończoność liczb, choćby były nieskończenie duże lub nieskończenie małe. Nieskończoności te choć są nieskończone, są różnej wielkości (nazywanej mocą zbioru)
Temat nieskończeności jest mega ciekawy, a dobrze zrozumiany potrafi zmienić myślenie, choćby o czymś takim jak koncept wiecznego życia po śmierci
@@gooral9438 Proszę nie kłamać tutaj szanowny Panie, ja sobie na kartce zapisałem dwie liczby, jedna z lewej , druga z prawej strony kartki i byłem w stanie do środka tylko 15 liczb innych zmieścić, sprawdzone empirycznie, zaorane!
Jestes fenomenalny. Gdybym miala takiego matematyka- pokochalabym królowa nauk. Chetnie posluchalabym o fraktalach. Fascynujace zjawisko. A moze jest juz? Nadrabiam zaleglisci
Dziękuję bardzo za filmik!
Trochę mi tu zabrakło faktycznej odpowiedzi "skąd się wzięła liczba Pi". Pamiętam że na studiach wyliczanie pola koła bez potrzeby korzystania z Pi bardzo mi otworzyło oczy co do tego ile pracy wykonali matematycy żebyśmy byli tu gdzie jesteśmy.
A czy mógłby Pan mi przybliżyć jak Pan oblicza pole powierzchni koła bez liczby PI . Samo PI -- to nazwa umowna , ale wartość PI -- to już matematyczna , więc niech się nazywa jak chce . Natomiast samo wyliczenie liczby PI , czyli skąd się to wzięło , jest podane w materiale , długość okręgu podzielona przez średnicę tego okręgu .Albo koła , jak zwał ,tak zwał . A jak to pierwsi liczyli , to nie wiem , ale wyliczyli . Pozdrawiam . to ciekawe tematy .
Dziękuję za merytoryczny i profesjonalny materiał
"Rażony Geniuszem" - Jason Padgett to dobry przyklad sawanta ktory potrafi zobaczyc liczbe PI w naszej codziennej rzeczywistosci. Polecam ksiazke.
Dziękuję za odcinek. Zabrakło w nim dość ważnego elementu - JAK wylicza się liczbę Pi na komputerze bo przecież komputer obliczając tysięczną czy milionową cyfrę po przecinku nie dokonuje pomiaru i jej nie uściśla mechanicznie...
No właśnie,mam wrażenie że to jest to jakaś stała cecha filmików na tym kanale, że bardzo często brak jest takich zupełenie oczywistych elementarnych informacji które wydawało by się, że powinny się znaleźć, a są samym sednem danego zagadnienia a wręcz kwintesencją.
Każdy wie co to jest liczba pi i w talkim filmie musi się znaleźć elementarna wiedza o niej, a która nie jest przekazywana w szkole. A tutaj autor pokazuje w zasadzie tylko to, co każdy zna ze szkoły plus kilka mniej istotnych rzeczy.
兀 należy przyrównywać do średnicy (d) a nie do promienia (r). Wtedy wszystko staje się proste. Szkolne formułki bazują na promieniu (r) i zaciemniają tą prostą zależność. I tak na przykład obwód to 兀d. Niewymierność bierze się stąd, że nie jesteśmy w stanie przyrównać prostej do łuku. Zawsze zostanie jakaś reszta (łuk). Podobne zjawisko mamy w przypadku przekątnej kwadratu i innej liczby niewymiernej - pierwiastka z dwóch. Przyrównując prostą do przekątnej musimy rozrysować schodki. I tu również zawsze zostaje jakaś reszta. Dobrze to widać w programach graficznych. Wystarczy narysować okrąg czy przekątną w Paincie, żeby to zauważyć.
komentarz dla zasięgu filmu - POPULARYZACJA NAUKI to bardzo ważna sprawa - dziękuje
Da się zmierzyć precyzyjniej przy pomocy linijki. Punkt na kole ustawić równo z punktem zerowym i przetoczyć wzdłuż (jak po użytym sznurku). Błąd odczytu wyniesie maksymalnie dwa milimetry (jedna działka, jeden milimetr na zerze i drugie tyle przy końcu). Warunkiem takiej dokładności jest precyzyjne poprowadzenie koła i odpowiednio długa linijka. Jak na domowe warunki, całkiem nieźle. Czynniki mogące pogorszyć pomiar: krótka linijka (konieczność przekładania dodaje sumujące się błędy odczytu), kiepskiej jakości linijka (urządzenia pomiarowe też obarczone są błędem), przesunięcie koła w czasie toczenia (niedokładność wykonania pomiaru).
Bardzo dobry materiał. Może częściej coś "z domowego laboratorium"?
Jestem miłośnikiem Pana programów i mam prostą metodę na pole koła bez liczby pi. Wystarczy od kwadratu średnicy np. 7*7=49 odjąć VAT to działa. Pozdrawiam
Ale jaką stawkę VAT uwzględnić? I co jeśli kiedyś ją zmienią?
A co jeśli "w podziale kuli" ukryły się wszystkie inne litery alfabetu greckiego?
Jeśli w kulę można wrysowac a także wyciąć dowolną figurę i dowolną bryłę geometryczną to oznacza że kula może przyjąć dowolny kształt czyli kula może przybrać dowolną postać.
Kształt + postać = MOC.
Wierzę że moc pochodzi z kuli.
Bardzo pięknie i ładnie opowiedziane o liczbie, może brakuje tylko aby materiał był kompletny jaki jest sposób na obliczenie tej liczby matematyczny a nie na podstawie okręgu i średnicy, przecież superkomputer nie mierzył tych wartości tylko w inny sposób obliczył liczbę. No właśnie w jaki?
na studiach informatycznych jest taki przedmiot metody numeryczne i przez niego dużo osób odpada ze studiów, ale ogólnie przedmiot jest fajny, bo wlasnie wyjasnia, jak komputer liczy takie rzeczy jak pi, przybliżenia, całki itp. Czyli jak komputer liczy rzeczy nieskończone, skoro nie może operować na nieskończonościach. ogólnie na liczbę pi pokazywali nam kilka metod ale taką najprostszą, którą ogarnie nawet osoba z liceum jest metoda Monte Carlo:
"Metodę tę śmiało można określić niezbyt matematyczną. Mianowicie metoda ta opiera się na liczbie Ludolfina. Jest to liczba rzeczywista i niewymierna (tak samo jak π) i reprezentuje stosunek długości obwodu koła do jego średnicy (tj. wartość liczby π). Jednak do wyznaczania jej wartości używa się... losowania. Mianowicie, aby wyznaczyć liczbę π tą metodą najpierw należy narysować kwadrat jednostkowy, następnie wpisać w niego koło. Następnie przeprowadza się n prób. W każdej próbie losuje się pewien punkt, który należy do kwadratu. W trakcie prób należy zliczyć ile punktów leżało zarówno w kwadracie jak i w kole. Następnie w celu obliczenia wartości liczby π wystarczy skorzystać ze wzoru 4T/n , gdzie T - ilość punktów leżąca w kole, a n - ilość prób."
czyli ogólnie mając bardzo dużo zasobów można zrobić biliony losowań i wyliczyć pi super dokładnie, ale to nie jest najwydajniejsza metoda. właściwie to jest prymitywna. dziś używa się Chudnovsky algorithm. na yt: Calculating π by hand: the Chudnovsky algorithm
Pi i Sigma (Przybysze z Matplanety). Ciekawa bajka moich czasów :D
Pozdrawiam serdecznie.
Alfred Nobel nie oglądał bajek w tv,on by się bał, jakby zobaczył tv to zacząłby się modlić. Nobel nie mógł oglądać
@@tomizubi halo! To tylko nick. Nie wiem czy się śmiać czy płakać z twojej bystrości.
Nastepny odcinek o liczbie Fi i jej zastosowaniu w starozytnych budowlach jk np Piramidy w Gizie?
Liczba *φ* (czyli *złoty podział)* i piramidy? Pierwsze słyszę.
Proszę stworzyć odcinki o paradoksach matematycznych oraz więcej na temat liczb niewymiernych.
Dzięki za film bo nigdy nie rozumiałem kultu tej liczby wśród matematyków
a teraz?
Jeśli myślisz, że pi jest kultowe to nie poznałeś jeszcze liczby Eulera i zespolonych. :)
Jeszcze dużo więcej można się dowiedzieć o tej liczbie. Zachęcam do szukania informacji🙂
@@spythere O panie... wyższa szkoła jazdy
@@Hana-gu7pt o tej liczbie możnaby książki pisać. Znam gościa co pisał pracę magisterską o liczbie pi, to , że występuje ona we wzorach na koło to dopiero początek, nic nie znaczący początek tej liczby. W normalnej matematyce nikt liczby pi nie dzieli, mnoży...itd ,zapisuje się jedynie symbol. Czy ktoś widział kiedyś np dzielenie przez pi ?
Jest to niemożliwe. Dlatego nie podniecajcie się tak tą liczbą. Wystarczy jedynie spróbować matematyki wyższej a zobaczycie czym jest ta liczba. Nigdy do końca nie zrozumiecie tej liczby,jest to niemożliwe
14.03 - 3.14 moje urodziny! ale mam piękną datę - również tego dnia zmarł wspaniały wizjoner, astrofizyk Stephen Hawking. Moja szczęśliwa liczba - nie inaczej - liczba pi :D
0:58 Oczywiście, że jest możliwe :) Wystarczy toczyć koło z zaznaczonym pkt. na obwodzie wzdłuż owej linijki na płaskiej powierzchni. Np. na takim stole, na jakim leży filmowy sznurek. Wynik nie będzie może perfekcyjny, ale na potrzeby eksperymentu szkolnego wystarczy.
ale w dalszym ciągu nie dowiedziałem się tak na prawdę skąd się wziełą liczpa PI i kto ją odkrył. WIemy, że wszystkie cywilizacje które budowały megalityczne budowle na ziemi tysiące lat temu musiał znac PI i FI
Pole koła można wyliczyć za pomocą trójkątów. 6 trójkątów każdy po 60 stopni daje 360 stopni. Ustawiając jeeden obok drugiego wychodzi 3 rąby itd.
Można chyba koło odrazu mierzyć na miarce a nie męczyć się z tym sznurkiem bo w sumie to nic nie daje a miarka też może być rozłożona i zablokowana
Pi_ękny odcinek :) super się ogląda jak zawsze na poziomie !
Dziękuję :D
Muszę dodać, że w szkole podstawowej właśnie pani z matematyki zadała nam takie zadanie. Mieliśmy sznurkiem zmierzyć obwody doniczek w domu i podzielić je przez średnicę. Odkrycie liczby Pi nie miało może coś wspólnego z problemem kwadratury koła? Starożytni nie mogli obliczyć powierzchni koła i kombinowali z kołem opisanym i wpisanym w kwadrat.
Nie przypominam sobie żeby w szkole ktokolwiek o tym wspomniał. Wzory znamy na pamięć, a ich pochodzenie? Szkolnictwo....
dzięki za materiał 🙇♂️🙃👍
Powiadomienie o Pana filmie zawsze mnie cieszy, szczególnie o tak bliskim mi temacie jakim jest matematyka :)
Tożsamość łączy pięć fundamentalnych stałych matematycznych:
liczbę 0,
liczbę 1,
liczbę π,
liczbę e,
liczbę i, jednostkę urojoną liczb zespolonych.
A mnie ciekawi jak wyliczono, że e do pi razy i daje dokładnie - 1. Same liczby niewymierne do tego wartość urojona i w wyniku równa wartość.
@@percivalus1836 Wzór Eulera - e^(i*x)=cosx + i*sinx
@@percivalus1836 szereg Taylora
Ciekawym sposobem pomiaru powierzchni koła jest, wyznaczenie powierzchni trójkąta prostokątnego o podstawie równej promieniowi koła i wysokości równej obwodowi. Sposób ten pokazuje piękno idei całkowania, a zarazem jest prosty do pomiaru w rzeczywistości. A co najciekawsze nie wymaga znajomości liczby pi
Wzór na PI. PI=sin(180/n) * n , to znaczy że musimy kąt 180 stopni ( czyli pół okręgu ) podzielić na dowolną ilość części i z tak powstałego kąta obliczyć sinus tego kąta. Następnie musimy pomnożyć wynik przez liczbę , przez jaką był podzielony kąt 180 stopni. Im będzie większa wartość n , tym dokładniejszy będzie wynik.
3:41 UWAGA! POWAŻNY BŁĄD (choć raczej czysto przypadkowy).
Okrąg nie ma obwodu! Okrąg ma długość.
Okrąg jest obwodem koła!
Wzór 2pir to jednocześnie wzór na długość okręgu i na obwód koła (bo to jedno i to samo ale rozróżnienie pojęcia koła i okręgu jest bardzo ważne).
W skrócie:
Okrąg jest pusty w środku, tzn. nie ma powierzchni (jak np. w przybliżeniu obrączka ślubna). Okrąg jest figurą geometryczną PŁASKĄ JEDNOWYMIAROWĄ.
Koło posiada powierzchnię, właściwie jest powierzchnią ograniczoną okręgiem w skład której wchodzi także okrąg (jak np. moneta). Koło jest figurą geometryczną PŁASKĄ DWUWYMIAROWĄ.
Pozdrawiam serdecznie.
Uściślijmy:
1. *Okrąg* nie jest *obwodem koła;* *obwodem koła* jest *długość okręgu.*
2. *Okrąg* jest *brzegiem koła.*
Pozdrawiam serdecznie.
Moim zdaniem dobrym pomysłem jest zrobienie kiedyś rozszerzenia w postaci odcinka o liczbach zespolonych. Temat na pewno uświadamiający i rozszerzający perspektywę spojrzenia na matematykę :)
Jedną z najbardziej fascynujących rzeczy o liczbie Pi, jest to że jest to liczba "transcendentalna" czyli nie wynika z żadnego równania algebraicznego rodzaju ax^n+bx^(n-1)....+k, co oznacza w zasadzie że ta liczba nie może zostać sztucznie "skonstruowana" na podstawie algebry--po prostu musi istnieć niezależnie od niej. W sumie liczby transcendentalne stanowiłyby świetny materiał do kolejnego odcinka. Tak naprawdę prawie wszystkie liczby w układzie liczb rzeczywiste są transcendentalne, ponieważ liczby transcendentalne stanowią łącznie zbiór o mocy "nieprzeliczalnej nieskończoności", podczas gdy liczby algebraiczne są jedynie przeliczalne tak jak liczby naturalne, jednak mają dużo większe zastosowanie w matematyce. Ponadto, jest bardzo trudno udowodnić że dana liczba jest liczbą transcendentalną, dowody w tym zakresie są zwykle bardzo skomplikowane. Transcendentalności pi udowodniono właśnie na podstawie równania Eulera, skoro wcześniej już udowodniono nietylko że e również jest liczbą transcendentalną, ale w sensie ogólnym każdy iloczyn w równaniu e^x, kiedy x to liczba algebraiczna. Skoro i jest liczbą algebraiczną (choć też "urojoną") oznaczało to że pi musi być liczbą transcendentalną.
Czy w kolejnm odcinku moglibyśmy się dowiedzieć jakie i z kim stosunki mieli wszyscy jakoś ustosunkowani do liczby pi?
Metoda Monte Carlo fajnie obrazuje czym tak naprawdę jest liczba PI.
Mamy okrąg o promieniu 1 i wpisany w to kwadrat o boku 2.
Losujesz dużą ilość punktów x y i potem te punkty co są w okręgu zliczasz
Pi=4 * punkty w okręgu/Wszystkie punkty
Im więcej punktów tym dokładniejsze pi.
Pole powierzchni koła można by obliczyć mnożąc promień przez obwód, bo teoetycznie jeśli bysmy rysowali kreski jedna obok drugiej wzduż lini obwodu to bysmy w końcu zapełnili całego koło, czyli de facto długość takich kresek pomnożona przez długoś obwodu powinna dać pole powierzchni koło. Uwaga mówił to humanista
Innymi słowy, przez nieskończoną liczbę π nie można dokładnie obliczyć np obwodu koła, jest to liczba nieokreślona
Niewymierna
We wzorze Eulera pominięto wyjaśnienie ciekawej litery i, która wynosi pierwiastek z liczby -1. Nigdy tego nie rozumiałem.
Bo "i" nie było tematem odcinka.
@@janzielinski6999
Owszem nie był, jak się jednak przywołuje wzory, to powinno się wytłumaczyć poszczególne składniki. Wzór bez objaśnienia jest jedynie zlepkiem nic nie znaczących znaków. Dla jednych i znaczy Amper dla innych to jednostka urojona.
Ojj... dowody pierwszego koła są z Polski. Waza z Bronocic, na której są rysunki wodzów na kołach sięga zdecydowanie późniejszego okresu niż w zapisach mezopotamskich...
Fajnie się dowiedzieć.
To jest niesłychane. Autor filmu marnuje się na YouTubie. Powinien conajmniej lecieć w kosmos z tym programem. Albo do Bytomia. To najlepszy film naukowy internetu!
Można zmierzyć średnicę zamiast promienia: Będzie i łatwiej i dokładniej.
Człowiek się uczy całe życie :D
Pozdrawiam z Lublina. Miło się słucha
Archimedes, pamiętam - ciało położone na łoże traci na oporze, czy jakoś tak
Chyba film Atrakcyjny pozna Panią za bardzo się wkręcił?
Pomyliłeś z trzema prawami Ohma:
I: ciało rzucone na łoże, traci na oporze
II : Ciało w ciemności traci na oporności
III: ciało puszczone raz, puszcza się cały czas
🤣🤣🤣
@@konradpikinski9044 No beka, rzeczywiście
Archimedes to raczej: ciało zanurzone w wodzie traci na smrodzie 😉
Pomyliło Ci się. To było inaczej. Tak krawcowi staje jak mu materia kroić daje.
mierząc średnicę zamiast promienia można uniknąć podwajania błędu tego pomiaru;)
Dr. Franc Zalewski w swoim filmie o systemie piętnastkowym z klasą obalił "Pi", słuszność systemu dziesiętnego i o dziwo ciąg Fibonacciego. Przedstawił na to miażdżące dowody w swoim referacie.
Ale ty tak na serio w to wierzysz?
@@wagabunda2228 A zapoznałeś się z dowodami w referacie? Czysta matematyka, a nie teorie spiskowe. Nauka, matematyka polega na udowadnianiu teorii, a nie wierze.
@@ironstyle2796 Podeślij ten film, z chęcią zobaczę jak ten pan cokolwiek obala.
ten gosc to mitoman xD nie wiem jak mozna wierzyc w to co mowi
Jezeli cokolwiek formalnie udowodnil to najpewniej zrobil to błędnie
w odcinku jest błąd, średnice przypadkowo podał Pan w metrach zamiast w cm :)
A mój ulubiony wzór z liczbą Pi jako budowlańca i ma właśnie nieskończenie wiele zastosowań: Pi razy drzwi ;D
Czekałem na słynny przykład z pizzą :D czy bardziej się opłaca zamówić jedną dużą czy dwie małe :D
Ja się teraz będę zastanawiać co się bardziej opłaca D:
Trzeba odjąć powierzchnię nie pokrytych niczym brzegów.
w okolicy jest jedna kopalnia Uranu, wczoraj tam byłem, na razie nie wykryłem rudy Uranu, metrowym wiertłem obok kopalni robię odwierty i sprawdzam dozymetrem, czy na wiertle jest Uran, mam dwa zapasowe akumulatory do wiertarki, jeszcze nie udało mi się znaleźć próbki Uranu, dzisiaj kupiłem kolejne wiertło do wiercenia
Ułamek 22/7 jest dosyć dobrym przybliżeniem pi, ale jeszcze lepszym jest 355/113, błąd wynosi 0,00000849%
bardzo dobrze 1+1=11.
ale jesteś mądry
To po prostu przesunięcie przecinka 16 razy w prawą stronę.. Nie wiem co to zmienia, możesz przesunąć ile chcesz. Jak przesuniesz bardziej to błąd będzie niższy i niższy
@@juri2001 chyba '1' + 1 = 11
@@baranosiu oczywiście że są inne przybliżenia, ale te akurat są łatwe do zapamiętania. 355/113 łatwo zapamiętać zaczynając pisać od mianownika, 113355.
@@juri2001 1+1=10, a nie 11 ;)
Moze material o ciagu Fibonaciego albo liczbach pierwszych
bardzo ciekawe tematy
Pozdrawiam
A w jaki sposób obliczono na tyle dokładnie obwód i promień, że dzieląc, otrzymujemy tą nieskończoną ilość cyfr po przecinku?
Przestrzeń jest nieskończona. Najdoskonalszy kształt w nieskończonej przestrzeni to kula. Kula to nieskończona ilość okręgów przesuniętych względem siebie wokół własnej osi. Jeśli podzielimy okręg przez jego średnicę to jaķąż inną liczbę moglibyśmy dostać niż nieskończoną jeśli przetrzeń jest nieskończona.Hehe...
P = π d
S = π d↑2 / 4
P = 2 π r
S = π r↑2
Czym różnią się te wzory - ano tym, że tych pierwszych używają inżynierowie, a tych drugich matematycy i humaniści. Bądź łaskaw zauważyć, że w praktyce promienia, na ogół, nie da się zmierzyć, zazwyczaj mierzymy średnicę (np. suwmiarką). Zrób test wśród znajomych i zapytaj ich o wzory na obwód i na powierzchnię koła - zobaczysz kto humanista, a kto prawdziwy inżynier.
Po co sznurek przyklejony do blatu? To dodatkowe przekłamania w pomiarach, można miarę od razu przykleić i po niej kręcić tym kołem.
jako ciekawostkę można dodać, że liczba Ęć wynosi około 1,86
Jak zwykle mega ciekawie :). Proponuję zrobić materiał o liczbach pierwszych. Pozdrawiam!
Jest też liczba kwi. Liczba kwi to stosunek długości obwodu kwadratu do jego boku i jest stałą niezależnie od rozmiarów kwadratu. UWAGA podaję stałą matematyczną kwi:
4
Istnieje stała (niewymierna jak π) określająca stosunek przekątnej kwadratu do jego boku:
d = a√2
(gdzie *d* to przekątna kwadratu, *a* to bok kwadratu)
Ale dziękuję, że mnie oświeciłeś, oświetliłeś i kompletnie ignorując sarkazm mojej wypowiedzi postanowiłeś zaryzykować publiczne potraktowanie mnie jako ignoranta aby wcielic się w rolę autorytetu w dziedzinie nobilitującej społecznie.
Doceniam odwagę.
Naprawdę
Więc jak go widzę to zasadniczo mam przed sobą dziesięć koncentrycznych okręgów ponumerowanych od zewnątrz do środka od 0 do 10 i targa mną niewysłowiona chęć aby gdzieś na przecięciu obwodu okręgu 7 z ramionami kąta wpisanego o wartości 60 stopni umieścić dwie ołowiane kulki z prędkością ok 900 m/s
Czy jak murarz stawia panu dom to uznaje pan za etycznie uzasadnione roztrząsanie jego zycia osobistego oraz moralnie i prawnie dozwolone grzebanie w jego prywatnych brudach a następnie uzyskiwanie z propagowania tych informacjii korzyści finansowych i materialnych?
Czy gdybym nakręcił i zamieścił na YT materiał o tym z kim i jak barłożyła matka autora to uznałby, że to jest ok?
Bardzo fajną książką na temat historii odkrywania kwadratury koła i, przy okazji wyliczania wartości pi jest "Bibliotekarz króla Jana".
A może następnym razem boska proporcja i liczba fi?? Z chęcią bym obejrzał materiał na ten temat.
Pozdrawiam gorąco!!!
Fi jest zdecydowanie ciekawszą liczbą !!
liczba pi moze się wiązać tez z hipotezą rimmana. dokladnie jeszcze nie zbadano znaczenia i roli liczby pi w definicji liczb pierwszych i gęstości ich występowania w układzie liczb nieskończonych. ale promień koła się wpisuje. tak czytałam.
Polecam weryfikować fakty, które Pan podaje, @NaukaToLubie. Co z wyliczeniami liczby Pi z 14.03.2019 albo ze stycznia 2020?
Poza tym, tak jak inni piszą, łatwiej użyć miarki niż sznurka, a co do pola, to przy użyciu wagi aptekarskiej i proporcji do kwadratowego kawałka tej samej tektury można tez łatwo eksperymentalnie z jakimś przybliżeniem policzyc pole.
I wciąż w sumie nie wiem, skąd się wzięło 3.14(...). Dowiedziałem się głównie, że PI jest jakąś tam liczbą, która powstaje po podzieleniu obwodu przez średnicę koła. Ale skąd taka a nie inna liczba? Dlaczego nie np. 3 lub 4? Skąd taka jej dokładność? Skąd to się bierze? Jak to się oblicza do tylu miejsc po przecinku? Skąd wiemy, że akurat ta, a nie inna liczba, jest dokładna? Materiał na kolejne filmy?
Liczba pi ma nieskończenie wiele cyfr po przecinku.
Istnieją wzory na jej obliczanie.
wszystkiego najlepszego liczbo Pi ;) 3.14.2022
... ale chyba najciekawsza we wzorze Eulera to chyba liczba "i" czyli pierwiastek kwadratowy z liczby -1 (czyli tzw. liczba urojona) ;)
zmora studentów :D
No i dobrze. Kiedy mierzył Pan obwód tego koła to co, sznurek się Panu skończył, zabrakło czy jak? Bez użycia liczby pi określił Pan obwód koła. Trzeba po prostu znaleźć sposób jak liczyć coś takiego bez liczby pi. Liczba pi określa własności umysłowe ludzi. A tak swoją drogę to obwód Ziemi też oblicza się z użyciem liczby pi? To jaka ta Ziemia w końcu jest?
Płaska 😧
Jak komputery liczą PI?
wrzuca się im obwód i średnicę jakiegoś losowego koła czy jest jakiś "wzornik" do tych obliczeń?
jak dokładnie został zmierzony obwód takiego koła do obliczania tak dokładnych przybliżeń?
Ja używam liczby pi do jazdy na rowerze, pomaga mi przy dużych prędkościach. Wtedy bez problemu wyprzedzam innych kolaży którzy nie mają pojęcia o liczbie pi.
Zabrakło najważniejszego. Jak to jest liczone. Jakiej średnicy musiałoby być koło żeby z obwodu wyliczyć π z taką dokładnością.
Film trwa 7:22
22/7 to chyba najprostsze i jednocześnie dosyć dokładne do zadań praktycznych przybliżenie liczby π
Mi się wyświetla 7:23, ale yt zaokrągla w górę. Słuszna uwaga
A jak na wartość lczby Pi wpływa zakrzywienie czasoprzestrzeni lub geometria nieeuklidesowska?
stosunek obwodu do średnicy jest stały a jego wartość nazwano Pi. zwykła proporcja. stosunek średnicy do obwodu też jest stały i wynosi 1/Pi. stosunek pola kwadratu to pola koła wpisanego/opisanego też jest stały a co za tym idzie stosunek pól tych dwóch kół też jest stały a to oznacza, że stosunek ich obwodów też musi być stały. magii żadnej w tym nie ma. jedyne co to w przypadku niektórych zależności, trudności w udowodnieniu tezy.
To taki paradoks : 1.jeżeli znamy dokładny obwód koła to nie możemy obliczyć dokładnej średnicy. 2 i na odwrót : jeżeli znamy dokładną średnicę nie jesteśmy w stanie obliczyć obwodu.
Nie znamy dokładnie ani tego ani tego
jak w starożytności mierzono cokolwiek co wymagało dokładności? Nie było miar, standaryzacji, wzorców. Nie dało się kupić miarki w markecie budowlanym. Zawsze mnie to zastanawiało - jak w takich warunkach powstawały skomplikowane wzory matematyczne 🤔
Pierwsze znaleziska koła? Przecież to na terenie dzisiejszej Polski odnaleziono najstarszy na świecie wizerunek pojazdu kołowego tzw. waza z Bronocic. Żarcik. Dobra robota. :)
Może odcinek o "fi", odniesieniu do ciągu Fibonacciego i rodzinie "złotych ciągów"?
No i ciekawy temat odnośnie stałych, które trudno zdefiniować jako stałe dla fizyki (ujmijmy to jako umowne stałe). Tylko bez "teorii spiskowych", bo za dużo tego już w materiałach w sieci, bez powoływania się nawet na konkretne nazwiska z tytułami...
A propos... Już zadałeś lekki kłam egiptologom, którzy twierdzą, że Egipcjanie w starożytności nie znali liczby "pi".
Pozdrawiam serdecznie.
Film za filmem, dzięki za materiał.
Ciekawe jak się liczy pi tak dokładnie? Przecież mierząc promień i obwód byłby duży błąd. Jak obliczyć dokładnie po, tzn skąd wziąć dokładne wymiary koła (obwód i promień). Przecież gdybyśmy nie znali dokładnie pi to obliczenie powierzchni znając promień byłoby niedokładne. Czy są inne metody jak wyliczono pi?
Mogłeś dodać chociaż jak Pi zostało obliczone, jaką metodą bo takie coś by było ciekaszwe a nie obliczenie czegoś że wzorów z podstawówki...
Zostało tutaj obliczone doświadczalnie "w przybliżeniu😉 Szukając innych metod dojdziemy do ciekawych wniosków zapewne, więc rozwijajmy swoje horyzonty, miast komuś dać wodze rzaczonych.
Pozdrawiam serdecznie.
W wikipedii masz tych metod mnóstwo. Wystarczy dokonać pewnego wysiłku i wpisać odpowiednie hasło. To tajemne hasło brzmi ... :
*liczba pi*
Bardzo ciekawy materiał.
Jak zapamiętać liczbę pi z dwunastoma cyframi po przecinku ? W starej szkole posługiwano się takim oto wierszykiem : był, i jest i wieki sławionym ów będzie który ten obwód średnicą wymierzył. Działa do dzisiaj jak tabliczka mnożenia. ;)
Program ciekawy, ale po co ta muzyka?
Dzień dobry
gdzie można kopic taki panel chybaby mały panel perowskity owy
- what's the favourite number of Pirates?
- 3,14
Ale... Przecież i obwód i średnica koła są fizycznie ograniczone... Jakim więc cudem wartość jednego lub drugiego jest liczbą niewymierną? Istnieją w ogóle dwie liczby wymierne, z których dzielenia wychodzi ta właściwa liczba Pi?
Wynikiem dzielenia dwóch liczb wymiernych jest zawsze liczba wymierna, dlatego odpowiedź na ostatnie pytanie jest negatywna.
Z radoscia patrze i slucham. Co prawda marzylo mi sie na nowo wrocic do Biochemii ale….
Matematyka to KROLOWA NAUK !!!
Studia uwienczone mgr inz sprzed 1/2 century, EEEEH tam .
DZIEKI STOKROTNE
Kocham Nauke i juz.
Czy π byłaby skończona w innym systemie liczbowym?
Nie
Wiążąc pi z historią można zapamiętać dalsze jej przybliżenie aż do dziewiątego miejsca. 3,14 dalej 15 data przewrotu majowego 926 i data śmierci Stalina 53
Ja kiedyś w 8 klasie podstawówki pamiętałem liczbę pi do 35 miejsc po przecinku, po co? sztuka dla sztuki
Wystarczy rozkręcić to koło do prędkości bliskiej prędkości światła (mierząc prędkość obwodową tego koła), i cała ta liczba "pi" rozjeżdża się w "matematycznych szwach".
Wszystko fajnie, ale wciąż nie wiem ile to π razy drzwi, ani
π razy oko. Czy jakieś uniwersytety pracują nad analizą matematyczną tych równań?
Tomasz (Pi)Rożek
Mam mały niedosyt po obejrzeniu materiału. Jak w zasadzie jest liczona wartość liczby pi? Jaki algorytm za to odpowiada? Rozumiem, że już od dawna nie ma tu żadnego związku z okręgiem i jego obwodem. Jaka zależność lub jaki wzór pozwala obliczać pi na tak dużym poziomie dokładności o którym mowa w odcinku?
Fajny kanał! A przy okazji: czy nie łatwiej było toczyć koło po taśmie mierniczej niż po sznurku i później ten sznurek mierzyć taśmą ? 😄