✓ Адский гроб из САММАТа 2020 года | x² + y² = 19451945 | Ботай со мной
Вставка
- Опубліковано 6 лют 2025
- Ботай со мной #071. Адский гроб из САММАТа 2020 года
Найдите хотя бы одну пару целых чисел, для которых справедливо равенство x² + y² = 19451945.
Книжка от Трушина: trushinbv.ru/book
Проголосовать за следующий ролик: www.donational...
Как поддержать канал: • Как помочь развитию ка...
Разовая помощь (Яндекс.Деньги): money.yandex.r...
Разовая помощь (PayPal): paypal.me/trus...
Регулярная помощь (UA-cam): / @trushinbv
Регулярная помощь (Patreon): / trushinbv
Онлайн-курсы по математике с Борисом Трушиным:
10 класс. Подготовка к ЕГЭ: trushinbv.ru/ege10
11 класс. Подготовка к ЕГЭ (задания 13-19): trushinbv.ru/eg...
10-11 классы. Подготовка к Перечневым олимпиадам: trushinbv.ru/olymp
Кроме этого, можно купить мои прошлогодние курсы в записи:
Подготовка к ОГЭ: trushinbv.ru/oge9
Подготовка к ЕГЭ. Задания 1-12: trushinbv.ru/eg...
Подготовка к ЕГЭ. Задания 13 и 15: trushinbv.ru/eg...
Подготовка к ЕГЭ. Задание 14: trushinbv.ru/ege14
Подготовка к ЕГЭ. Задание 16: trushinbv.ru/ege16
Подготовка к ЕГЭ. Задание 17: trushinbv.ru/ege17
Подготовка к ЕГЭ. Задание 18: trushinbv.ru/ege18
Подготовка к ЕГЭ. Задание 19: trushinbv.ru/ege19
Другие курсы Фоксфорда: trushinbv.ru/co...
Репетиторы Фоксфорда: trushinbv.ru/coach
Личный сайт: TrushinBV.ru
Группа "Олимпиады, ЕГЭ и ОГЭ по математике": ege_tru...
Группа "TrushinBV.ru": trushin...
Личная страница: trushinbv
Группа "TrushinBV.ru": / trushinbv
Личная страница: / boris.trushin
Инстаграм: / trushinbv
TikTok: / trushinbv
Telegram: t.me/trushinbv
Twitter: / trushinbv
UA-cam-канал: / trushinbv
Трушин считает столбиком 20 минут без смс и регистрации
@Unidentified местный мем, мол БВ часто лажает в арифметике и в принципе не любит считать
когда рассказывался первый вариант, я сидел и думал "да ну нафиг, перебором решать точно не правильно" и искренне не понимал зачем он это делает помимо какого-то адского тайминга, который явно не подходит олимпиаде, тут еще целых две подсказки: подозрительно повторяющиеся блоки цифр в числе и 5-ка на конце, дающая не так много вариантов
Скачать бесплатно торрентом
а что, не надо было СМС посылать что ли?
😅😂🤣
Борис: Если разность этих чисел окажется полным квадратом, то мы решили задачу
*Я смотрю на хронометраж*: Не окажется..
Но он же говорил о двух способах! Вдруг второй надёжный, но длинный?
Не ожидал тебя встретить тут)
Туротряд Артека на месте))
ZeL1k7 Stream привет)
45^2=50×40+25=2025
@@РаисаАршинова-з7э не проще в уме просто умножить 45 сначала на 40 - это будет 1800, а потом 45 на 5, это будет 225, и сложить вместе, если считать умеешь то в числах не запутаешься))))
как обычно, всё решается через "не сложно заметить что"!
Ага, мы их всегда назвали: задачи "очевидно, что..."😄😄
Путём НЕСЛОЖНЫХ ВЫЧИСЛЕНИЙ...
"Вдумчивый читатель уже с самого начала заметил, что решение задачи весьма тривиально. Поэтому в данной книг мы его не приводим" xD
Я пока не досмотрел, но тут есть куда более очевидное решение.)
Есть легко проверяемый факт: произведение сумм двух квадратов это сумма двух квадратов (потому что в комплексных числах модуль произведения это произведение модулей), так что напрашивается мысль разложить это на множители. Получишь 1945*10001=(2*2+1*1)*(100*100+1*1)*389, осталось только 389 сделать суммой квадратов, что, полагаю, несложно. Напоминаю, ролик я не досмотрел, может, так в итоге Борис и решил.
Досчитал, 389=17*17+10*10, так что получим даже не одно решение такого уравнения.)
Всё что я запомнил из этого видео - 45 в квадрате = 2025. Через 5 лет понадобится
Ты родился в 1980?
А это не надо запоминать. Квадраты чисел типа х5 находятся следующим образом - х0*(х+1)0 + 25
то есть 15^2 = 10*20+25 = 225;
35^2 = 30*40+25 = 1225;
85^2 = 80*90+25 = 7225
и т.д.
@@ВсёПутём-с8у Абалдеть
@@ВсёПутём-с8у меньший десяток на больший десяток плюс 25
@@ВсёПутём-с8у з
Открыл видео, а тут трушин в столбик считает 👁️👄👁️
Заметили ли вы, что другое качество звука стало?
@@y1bfnf5z1j3 карацуба?
ваууу он считает за доли минут
Гроб никого не щадит!!!
- Мастер ФИДЕ, Максим Омариев
Хпазах
В 2 часа ночи смотрю как Трушин решает столбиком
В 1:44
Жиза
17:25 - тождество Диофанта: (a²+b²)(c²+d²) можно представить в виде суммы двух квадратов (ac+bd)²+(ad-bc)²
Не угадал ru.wikipedia.org/wiki/%D0%91%D1%80%D0%B0%D1%85%D0%BC%D0%B0%D0%B3%D1%83%D0%BF%D1%82%D0%B0#%D0%A2%D0%BE%D0%B6%D0%B4%D0%B5%D1%81%D1%82%D0%B2%D0%BE_%D0%91%D1%80%D0%B0%D1%85%D0%BC%D0%B0%D0%B3%D1%83%D0%BF%D1%82%D1%8B
Только "Брахмагупты"
@@nife416
Я до вчерашнего дня вообще не знал, что у этого равенства есть название )
@@vvoooov А разве у него не несколько названий? ru.m.wikipedia.org/wiki/%D0%A2%D0%BE%D0%B6%D0%B4%D0%B5%D1%81%D1%82%D0%B2%D0%BE_%D0%91%D1%80%D0%B0%D1%85%D0%BC%D0%B0%D0%B3%D1%83%D0%BF%D1%82%D1%8B_%E2%80%94_%D0%A4%D0%B8%D0%B1%D0%BE%D0%BD%D0%B0%D1%87%D1%87%D0%B8?A%252F%252Fyandex.ru%252F%253Ffrom%253Dalice
@@Hesalex Индус по старше будет. А вообще, я извиняюсь за это. Хоть тождеством Эйлера назови, такие споры бесполезны и сути по отношению к задачи не меняют
Те кто хоть немного знают информатику, решат обычным перебором с симуляцией компа в мозгу)
Такой подход говорит о непонимании сути.
@@alexeybekasov4298, такой ответ говорит о непонимании юмора.
@@sasharasty2890 ok :)
для желающих вот полный перебор (запускается в браузере в консоли):
function cnt(x) {return Math.sqrt(19451945-(x*x));}
for(var j=1;j
@@lexcheshir6416 что-то фаирфокс возвращает неопределенность
Несмотря на то, что я преподавал химию в средний школе, почти всегда смотрел и смотрю ваши ролики. Вы просто умница!!! Мое почтение!
Мне почтение :)
Тебе то за что?
Увлекаюсь математикой и слушаю Гражданскую Оборону (ГроБ). Интересно, по какой из этих двух причин мне в рекомендациях высветилось данное видео?)
По обеим причинам.
Та же фигня...
@@hleba_kusok1404 обеим
@@aoaoa605 точно, прошу прощения.
Иногда смотрю видео по математике.
Ну и Гр.Об само собой
Гениально.Я бы 100 лет решал.Где вы были 20 лет назад когда я был школьником.Ладно, зато будет что дочке показать когда в школу пойдет.Успехов, спасибо.Подписываюсь.И лайкою
Как приятно теперь смотреть эти видео после сессии первого курса))
Помню, после сессии четвертого курса пьём пиво в сквере напротив универа, тут подбегает наш бывший староста, весь такой взволнованный: "Пацаны, пацаны, короче, мне сеструха рассказала, чё это за хрень, которая "интеграл", ну... которая как S длинная... типа транскрипции "Ш" в английском словаре..! Короче, помните в школе была такая штука - ПЕРВООБРАЗНАЯ, ну т.е. производная наоборот? Так вот это ОНА И ЕСТЬ, прикиньте?!!"
)))
@@nicolaysmirnov4542 а че за специальность? Лингвистика что ли?
@@Sergonizer Автоматизация технологических процессов производств ))
Насчет легендарной задачи из саммата: кажись я понял как они придумали эту задачу. Короче есть такое тождество Брахмагупты, оно доказывает, что если число представили в виде произведения чисел являющихся суммой квадратов, то оно представимо в виде суммы двух квадратов и наоборот : (x^2 + y^2)(a^2 + b^2) = (ax+by)^2 + (bx-ay)^2. И отсюда уже можно пачками штамповать такие задачи:
Берете 4 квадрата, складываете их по парам, полученные результаты перемножаете и просите представить полученное число в виде суммы 2 квадратов.
Так что какая никакая но теория чисел за этой задачей стоит)
Вот так вот я переоткрыл уже ставшую легендарным мемом задачу спустя много лет)
Не знала, что олимпиады могут быть интересными... первое видио по этой теме в рекомендациях, а так понравилось, что хочется теперь самой решить какую-нибудь ещё задачу...
Борис, Вы умница.Смотрю с удовольствием.Так держать!
Открыл видео с этого канала первый раз, не знаю зачем я это посмотрел, но было очень интересно
Благодарю за труды. Очень интересно смотреть Ваши видео!
10:12 Чудеса озвучки: слышим "восемь", по губам читаем "шесть". :-)
Владимир Валерьевич шесть (десять)
У Вас отличная когнитивная гибкость!
6 (четыре)
четыре(четыре)
*Великолепно!* Жаль, додуматься до такого решения практически невозможно! Уверен, что статистика подтвердила бы моё утверждение.
мне тоже кажется, что задача не самая интересная, но при её решении приходится вспоминать много другого интересного. Значит в этом и есть её интересность!!!
Я вот двух вещей не пойму ,почему данное видео у меня в рекомендациях,и почему я уже смотрю третье видео.Пока я пытаюсь понять две эти вещи,оформлю подписку
Фух! Я испугалась сначала, что красивого решения не будет :)
да его по факту и нет. Тут только условие красивое.
@@фкпфкпукпфупак Так напишите, если знаете решение получше.
@@livemirraia кто сказал вам что я знаю лучше?
Решение есть: 3149^2 + 3088^2 = 19451945
Чекайте!
Решил в лоб, без листочка и без калькулятора.
Пошаманил с цифрами и собсна, всё)
Сначала подыскал близкие трехзначные, это 315 и 310, посмотрел и решил, что 310 как-то много, взял 309, и их сумма квадратов на мой взгляд была близка к нужному, а именно получил 194706. Дальше я пошёл ещё более мелкими шагами.
Короче, 19470600 - (2*3150 + 1) - (2*2*3090 + 2*1 + 4) = 19451945
@@mentosnlink4505 Мне нравится, что 2 числа близки по значению.
Не пользуюсь матами, но сейчас тот редкий случай, когда захотелось в сердцах воскликнуть, как автор ******* крут!! Просто огонь! 🔥🔥
А мне понравилось! Я, правда не знал, что 10001 = 73х137. Стоило заметить, что есть просто теорема о том когда число можно представить в виде суммы двух квадратов (все простые делители вида 4k-1 входят в четной степени). Но в любом случае именно так она и доказывается: (a^2+b^2)(c^2+d^2) = (ac+bd)^2 + (ad-bc)^2. Поэтому участнику нужно было заметить, что 19451945 = 1945х100001=(44^2+3^2)(100^2+1^2). Для числа 1945, можно было и снова приемом воспользоваться: 1945 = 5х389 = (2^2+1^2)(10^2+17^2) = 37^2 + 24^2 или = 44^2+3^2.
Вообще 100001 = 5х73х137х389 = (2^2+1^2)(6^2+1^2)(11^2+4^2)(17^2+10^2) . Комбинируя способы применения формулы (решая в каждом случае кто a и кто b) можно получить все 8 решений указаных Timur Pryadilin.
Целая лекция может быть по таким задачам:
1) простые числа виде 4k+1 однозначно представимы в виде суммы двух квадратов
2) аналогичная формула для суммы 4х квадратов
3) в среднем число представимо в виде суммы двух квадратов натуральных чисел (порядок важен) pi/4 способами ...
Неплохо 🐸👏
Это все легко только осталось запомнить все формулы типа (a^2+b^2)(c^2+d^2) = (ac+bd)^2 + (ad-bc)^2
Alex Ivanov , если в математике хочется что-то запомнить, значит что-то идет не так (просто мое мнение). Знаете, для комплексных чисел x=a+bi и y=c+di выполнено: |xy|=|x||y|
73 неправильно разложили: не (6^2+1^2)=37, а (8^2+3^2)=73
Всего 16 решений
Разъеснене и объяснение задачи, оказалось гораздо интереснее чем сама задача.
30 лет. Математику особо не любил, а тут прямо залип👍👍
мне 32. но я б решал через комплексные - красивее
Спасибо за крутые разборы олимпиадных задач!☺️ Ваши видео очень помогают с подготовкой. Можно побольше разборов подобных задач из олимпиад 1го/2го уровня🙏🏻
Если перебрать все пары целых чисел в диапазоне от 1 до квадратного корня из 19451945, то у задачи находятся 8 пар различных решений. Самые близкие друг к другу числа - 3088 и 3149 😊
Мне придётся подписывать гроб: "Осторожно, иностранный агент!"
Ахах, прикольно, но я думал что это какая-то абсурдная задачка чтобы смутить участников олимпиады😀🤣
Интересное решение в последнем варианте. Определённо заслуживает лайка.
Отличный разбор. Последняя часть очень хорошо объяснена. В принципе, чтобы упростить нахождение суммы квадратов для 1945, можно было бы применить тот же метод, заметив, что 1945 = 5 * 389, и 389 = 17^2 + 10^2. Кроме того, поскольку и 1945, и 10001 есть произведение двух простых чисел вида 4k + 1, то из этого следует, что у задачи существует 8 различных решений.
а при чем тут 4k+1? вижу это в комментариях, но не понимаю, откуда это вылезло
Действительно, 8 пар решений.
Хорошо что автор ролика узнал про САММАТ :)
Ну ну, я двухзначные числа иногда с ошибками умножаю)))
Я тоже ))
В конце есть пару из десятков "смешных моментов", которые возникли, пока я записывал ролик )
Я думал один такой🤣
Спасибо, Борис! 👋
Я снова люблю математику!❤️
"... и в этот момент получается следующее!" А далее ютуб включает рекламу. 😈😈😈
блокировщик рекламы тебе в помощь!)
особенно если реклама розетки.
Лал у меня тоже
😆😆😆😂😂😂😂
Не заметил как 20 минут пролетело и ролик закончился. Крутая задачка
10:40 "... получается следующее" И тут у меня выскочила реклама Чудо XD
какое красивое решение. Стало интересно, решила бы я эту задачу, когда была школьницей. А сейчас уже неохота. Пришла в восторг - и достаточно.
Число 19451945 очень замечательное. Оно представляется суммой квадратов 8-ю различными способами. 19451945=256^2+4403^2=344^2+4397^2=581^2+4372^2=1252^2+4229^2=2363^2+3724^2=2437^2+3676^2=2632^2+3532^2=3088^2+3149^2
Сначала я решил задачу брутфорсом в икселе, потом мне стало стыдно и я вспомнил про старика Брахмагупту и получил 2 решения по
этой формуле. Глубокоуважаемый маэстро Борис тоже в конце ролика воспользовался этой формулой.
Всем большой математический привет, дядя Лева
Никаких чудес. Кто проходил комплексные, знает, чтотнорма произведения равна произведению норм, расставляем +и-кикаждой компоненте и получаем 8 вариантов
Если уже проходили комплексные, то неожиданных идей не надо. Сумма квадратов - это же квадрат нормы какого-то числа, а мы знаем, что норма произведения равна произведению норм, можно попробовать разложить исходное.
А я то думаю, что-то 65536 знакомое число))
я ж программист xD
Ничего не понимаю в математике , но было очень интересно , спасибо😂
Приятный чувак! Спасибо за интересный рассказ)
А мне нравится эта задача. Брутфорсить без калькулятора стрёмно, поэтому надо проявить смекалку. Первое, что приходит в голову - это окружность )) Правда, чё с ней дальше делать, я пока не знаю. Придумывать, с какими диаметрами она может пересекаться или типа того. Но разложить на сумму квадратов - это вау. Я не догадался.
Красавчик. Мне понравилось.
Спасибо! Интересная задачка)
Здорово, Борис!
"В этот момент начинается следующее,"- выскакиет реклама Тинкофа
Классная задачка :) Немного подвис на последнем шаге, но сумел догадаться на словах "раскроем скобки".
Не знаю, как по мне, задача крутая, если решать не в лоб
Феерично, я в восторге!
задача топ! давно математикой не занимался, но на это очень интересно смотреть!
Задача - огонь, супер!)
Решал через комплексные числа, получил вторую пару
Каким образом?
@@Шахи3000 19451945=10001*1945=(100²+1²)(44²+3²)=(100+i)(100-i)(44+3i)(44-3i)
Перемножим скобки с отрицательным коэффициентов перед I и положительным.
(4400+300i+44i+3i²)(4400-300i-44i+3i²)=(4400-3+344i)(4400-3-344i)=(4397+344i)(4397-344i)=4397²+344²
@@Шахи3000 Кстати аналогично можно было брать пары скобок с разным знаком у коэффициентами перед i, получится другая пара. Так из произведения сумм квадратов можно сделать одну сумму квадратов
добавьте способ в закреплённый комментарий
В закреп +
Мне почти 40 лет, и я с удовольствием смотрю такие задания. Спасибо!
З.Ы. Посмотрел несколько разборов "обычных" для меня ранее заданий, удивление вызывает насколько шаблонами ЕГЭ отучили детей думать.... Комменты убивают порой
отучили не шаблоны, отучили учителя. Поэтому комменты убивают не только к роликам по математике
@@xlenchik Не согласен в корне с Вами! Учителя зависимы от ЕГЭ порой даже больше чем ученики - с них требуют результатов и они вынуждены их дать. И учителя идут по пути наименьшего сопротивления, т.е. вбить в головы школьника шаблон, зная который он с высокой долей вероятности наберет необходимый балл. И из этого явно следует, что научить всех решать заранее прогнозируемые задания гораздо проще, чем вырастить математика (не важно какая наука, смысл тот же). Средний балл большой - все довольны (МинОбр, рано, директор, завуч, учитель, ученик, родители).... но то что из этой массы "достать" действительно математика/биолога/историка и .т.д. становится практически нереально никто не думает.
А кто в этом виноват, задайтесь вопросом? Учитель???
- Нет! Что? в один день все учителя отупели и разучились учить?)))) Да нет, конечно.
Ученики? Тоже нет, они хотят хорошую оценку и все, знания в школе единицы хотят получить, желание получения знаний у большинства позже наступает.
Учитель виноват? В чем? В том что он обеспечивает при должном уровне своего опыта/образования высокий средний балл (средняя температуру по больнице) :)))) Если он ее (температуру по больнице) не будет обеспечивать, его нахрен уволят, т.к. он не справляется со своими обязанностями.
Система виновата имхо,
@@EvgenyGutkin Извините, Вы совершенно правы. Не учла, что шаблонизированное ЕГЭ в России это далеко не аналог ЗНО в Украине. У нас в ЗНО задачи значительно разнообразнее и в значительно большей степени требуют умения анализировать, думать, комбинировать разные подходы, нежели решать типовые задачи по шаблону, не меняющегося из года в год.
двузначные числа ,оканчивающие на 5 и возведенные во вторую степень решаются так : первая цифра умножается на следующую за ней и к этому значению приписывается 5 помноженную на себя, то есть 25.например 15 во второй степени : 1 умножаем на 2 ровняется 2 и приписываем 25 получилось 225. 95 во второй - 9 умножаем на 10 и приписываем 25= 9025 и т.д.
Класс. Мне очень понравилось. Подобные примеры видела - принцип решения точно такой же. Но с большими числами и без калькулятора😨 Недавно где-то видела извлечение корня без калькулятора. Эх, не сохранила... Но там принцип разбивать чило на пары или тройки цифр слева направо, кажется, и, а вот дальше не помню. Увы. Если у вас на канале такое видео есть не плохо было бы ссылку на него (как раз в тему!), а если нет, мне кажется, что не плохая идея для свежего ролика. Спасибо за ваш труд!
Если кому интересно, то вот все пары таких x и y:
256 4403
344 4397
581 4372
1252 4229
2363 3724
2437 3676
2632 3539
3088 3149
если просто ввести в вольфрамальфа число 19451945, то сразу же и получим все эти квадраты: www.wolframalpha.com/input/?i=19451945
как ты их нашел?
@@janissaulitis9670 написал программу
c.radikal.ru/c06/2002/70/b110b7a79430.png
)
я в экселе посчитал.
Супер! Было интересно
Г.Р.О.Б Горячо, резко, очень больно
Задача довольно интересная, но она больше на внимательность и так называемую смекалку. Мне кажется одна из самых важных подсказок это конечно само число 19451945. Думаю что все подумали его раскласть , но второй шаг действительно сложный. Но в целом задача интересная.
Очень интересное и увлекательное видео, несмотря на то, что я много чего тут не понимаю.
Скоро Рождество. Предлагаю в одном из ближайших видео рассказать о Рождественской теореме Ферма о представлении простых чисел в виде суммы двух квадратов.
Почему представление всегда есть и почему всегда только одно.
И о том, почему нет детерминированного алгоритма для отыскания этого представления. :)
Я апплодирую тем, кто это задание изобрел!
время на часах 4 утра, наткнулся случайно на видео и залип ))) Гениально )))
олимпиада почти имени меня
Ты просто машина, Борис
Я слишком ленив чтобы решать в лоб. разложение на 10001 и 1945 пришло в голову сразу. А дальше подзавис. Теперь когда есть решение, его нужно унифицировать и положить в копилку арсенал.
В первом варианте решения- омерзительная задача. тупой подбор цифр не требующая особых знаний, солидарен с ребятами забившими на неё!
Пока все в 2020 Трушин в 2025 запомните что 45² этот год является квадратом 3:55
как считать числа с окончанием на 5. )) 35 например. : 3 умножаем на число,которое,когда мьі считаем !!!стоит после него ( 1234567) 3*4=12 и просто всегда добавляем 25.
помню в журнале прочитал метод как числа а-ля 45, 35, 25, и так далее возводить в квадрат в уме. на примере 35: нужно число десятков домножить на следующее число, т.е. 3*4 =12 а сзади дописывам 25 и получаем 1225. работает для всех чисел оканчивающихся на 5. Школьники берите пользуйтесь
Саммат вообще какая то странная олимпиада, там чуть ли не 8 из 10 задач всегда гроб
Ну так и диплом с 2 3 задач)
@@UsuallyDestroyer в 2021 с дипломами кидалово у них. За 5 задач даже призера не давали.
Мне очень понравилась эта задача!)))
8:50 Можно второй раз не возводить в квадрат соседнее число, а просто отнять от 4410^2 (4410+4409)
Задача интересная, не для средних умов, но она делает нашу страну Первой!
В чем первой ? Да очнись . У тебя смартфон росийский?
for i in range... :D
Спасибо за то что высказываете мнение свое а не власти
Решение через комплексные числа
(100²+1²)(44²+3²)=(100+i)(100-i)(44+3i)(44-3i)=
(4400-300i+44i+3)(4400+300i-44i+3)=
(4403-256i)(4403+256i)=4403²+256²
Там ещё кучу других решений можно найти, если менять мнимые и действительные части и перемножая другие скобки
Решений должно быть около 8
Вау. А откуда именно такие пары чисел?
догадаться выделить два полных квадрата из суммы четырёх квадратов - это огонь!
страшный сон перед экзаменом
По-моему задача просто супер!!!
«Адский гроб» - это уже что-то из Булгакова.
Сложные мысли, но по факту, если вникнуть, то становится понятно
Люди, чуть старше знают, что 256^2 = 65536, потому что в эпоху, пока не появились смартфоны это было одной из характеристикой телефонов) количество цветов экрана телефона часто было таким)
не только в старых телефонах и компах (игр дофига было в 16 битах, да и видеокарты с мониками старые максимум столько умели), все кто хоть немного дружат с графикой, знают, что это в принципе количество цветов в 16 битной палитре, в любом даже современном редакторе это есть, а ещё это 8 килобайт или других 8192 х-байт, где х такой же как и в 65536 х-бит (кило-, мега-, гига- и т .д.) ))
upd: это же число в квадрате даёт максимально возможное количество ip адресов в версии ipv4 (то чем пользуются практически все на данный момент)
И сдающие информатику знают)
Задача понравилась!
Мне показалось, что совсем простая задача :)
19451945 = 10001*1945 = 10001 * 5 * 389 = (100^2 + 1^2) * (2^2+1^2) * (10^2 + 17^2)
далее используем известный факт, что произведение чисел, являющихся суммой квадратов само является суммой квадратов (a^2+b^2) * (c^2 + d^2) = (ac+bd)^2 + (ad - bc)^2
Ну и строим нужную нам пару чисел, например 4397 и 344
ого, хорош
харош
Больше похоже на какую нибудь одну из задач Эйлера, для программирования. Где компьютер просто быстро перебирает все варианты, а наша задача только оптимизировать
Потратил на это задание большую часть времени (не решил в итоге >:( , хотя перебрал 3 числа первым способом, и смог разбить на скобки как во втором). Посчитал, раз это первое задание, и так плохо решил, что олимпиады не мое. СПАСИБО САМАРА! Но сейчас вижу ваше видео, и понимаю, что меня подловили, именно поставив его первым, поэтому стоило бы начинать с других заданий. Интересно узнать ваше мнение про задания на САММАТЕ в целом.
А я их не видел. Меня конкретно про эту задачу спросили.
Еще про ожерелье из шариков в конусе
Люблю информатику, написал секунд за 40 код с банальным перебором и получил более 10 верных ответов)))
Ошибочка, не 10 а всего 8)))
Гроб? Я такие задачки на раз-два щелкал в школе! Спасибо Алексею Алексеевичу Водовозову! Лучший преподаватель математики на моей памяти! Москва 1970-80г!
Super, Boris
Решая в лоб, необязательно вручную считать все квадраты
Очевидно, что квадрат числа, которое на 1 меньше другого числа, чей квадрат известен, будет меньше на n²-(n-1)² = 2n-1, что посчитать уж проще)
тоже об этом подумал, когда считаю большие квадраты, и при этом знаю чему равен близкий к нему квадрат, всегда именно эту тактику и юзаю
ля какая красота👍спасибо
Можем повторить 👍
Хм. Очень интересное решение. Но это для крепких математиков. Я с этой наукой очень близок, но даже 1945*10001 для меня стало потрясающим откровением. А дальше, так вообще )))
Спасибо!
Интересно, что если взять еще дату восстания декабристов (1825) и наложить ее на предложенную дату окончания ВОВ, т.е. уравнение x² + y² = 19451825 то будет уже на 8 пар решений, а 12 пар:
112, 4409; 665, 4360; 785, 4340; 1127, 4264; 1324, 4207; 1465, 4160; 1976, 3943; 2084, 3887; 2449, 3668; 2735, 3460; 3001, 3232; 3089, 3148.
Заинтересовался и написал программу поиска числа с максимальным количеством пар решений...
Вы программист?
Последний способ вообще бомбовый!... Думаю, на олимпиаде такой пример давать можно - первый способ лёгкий (очевидный) (Кто те 94 человека, которые ставят дизлайки? Вы, вообще люди?)
Для тех кому интересно вот все возможные решения этой задачи:
256, 4403
334, 4397
581, 4372
1252, 4229
2363, 3724
2437, 3676
2632, 3539
3088, 3149
И очевидно можно местами менять x и y.
Прогой?
@@senya_tall очевидно
Ролик не смотрел, но комментарии обалденные!!!