RÉSOUDRE 1/x + 1/y = 1/10

Поділитися
Вставка
  • Опубліковано 11 гру 2024

КОМЕНТАРІ • 303

  • @samueldarre3670
    @samueldarre3670 Рік тому +9

    vous avez une façon tout à fait ludique et communcative de faire aimer les maths même aux plus réfractaires comme moi qui pourtant doivent
    se remettre dedans pour préparer un concours, j'aimerais avoir un prof particulier comme vous pour m'aider, bravo pour ce que vous faites

  • @alexismalafosse6784
    @alexismalafosse6784 Рік тому +4

    Je n'aurais pas imaginé qu'il y ait 9 couples de solutions à cette équation. Brillant !! Très bien expliqué en plus.

  • @Acssiohm
    @Acssiohm Рік тому +9

    Excellente vidéo, j'aimerais par contre pointer du doigt une petite erreur de rigueur, en effet, on avait certes que x et y sont strictement positifs , mais rien nous dit que x-10 et y-10 le sont, donc il aurait fallu considérer les produits de négatifs ( -10 * -10 = 100 ..etc ) , et voir que dans tout ces cas là, on avait x ou y négatif ( donc au final, pas de solution supplémentaire, mais on l'avait pas montré avant )
    Une autre méthode aurait été de dire que 1/x > 0 , donc 1/10 = 1/x + 1/y > 1/y donc y > 10 , ainsi on a bien que y-10 > 0 aussi

  • @cainabel2553
    @cainabel2553 Рік тому +2

    Petite critique gentille : de @1:00 à @2:00 tu ne fais que mettre en dénominateur commun en fait, en deux étapes; ensuite tu décomposes (x+y) à @2:19 et tu passes tout à gauche au final pour arriver @2:27 à la forme "clean" (genre polynôme):
    x*y - 10*x - 10*x = 0
    Du coup pourquoi ne pas plutôt :
    - tout mettre d'un coté pour avoir une forme propre truchmuche = 0
    - d'un seul coup, mettre ça avec un dénominateur commun qui sera donc directement 10*x*y
    - enlever la fraction pour le garder que le numérateur
    - arriver donc à 10*x + 10*y - x*y = 0
    On dirait que j'ergote vu qu'on arrive au même point (enfin à l'opposé près) par un chemin analogue.
    Mais alors pourquoi je préfère ça? Parce que c'est nettement plus méthodique :
    - une équation va toujours s'écrire sous la forme machin = 0 (sauf si on voit immédiatement la voie de sortie)
    - les fractions dégagent
    - une fraction = 0 => le numérateur = 0
    Je veux dire qu'il y a moins d'étapes de doute (doute sur le bon chemin), c'est plus algorithmique, donc mieux pour reformuler les problèmes quand il y a plusieurs fractions.
    Dès qu'il y a plein de fractions qui n'ont pas de simplification évidente c'est la meilleure méthode selon moi.

    • @hedacademy
      @hedacademy  Рік тому +4

      C’est toujours bien d’avoir conscience des différents chemins ou alternatives. Ça fait réfléchir et on en sort grandi.
      J’aime ces critiques « gentilles », elles font progresser. Donc merci pour ton partage 😊

  • @michelbernard9092
    @michelbernard9092 Рік тому +12

    Si ça peut intéresser quelqu'un voici ma solution analytique, sans astuce :
    je passe les détails et j'exprime y en fonction de x :
    y=10*x/(x-10)
    Par division euclidienne 10x=(x-10)*10+100 il vient
    y=10 +100/(x-10), or y doit être entier donc x-10 doit être un diviseur de 100
    100=(2^2)*(5^2). il y a donc 9 diviseurs de 100 : (1,2,4,5,10,20,25,50,100)
    donc 9 solutions,
    pour la première x-10=1 d'où x=11 y=110
    pour la seconde x-10=2 d'où x=12 y=60
    pour la troisième x-10=4 d'où x=14 y= 35 etc..
    Note : lorsqu'un nombre se décompose en a^b*c^d le nombre de diviseurs est (b+1)*(d+1)

  • @Don-heckmanElucien-mf4xu
    @Don-heckmanElucien-mf4xu Рік тому +75

    Je suis Haïtien, avec ton aide et avec ta capacité après quelque temps je serai un grand enseignant en math🙌👌

  • @noedeverchere2833
    @noedeverchere2833 Рік тому +6

    Formidables explications. Tout le monde adorerait vous avoir comme professeur. Vos méthodes sont compréhensibles et claires expliquées sur un ton amical et proche. J'adore ! Je suis en prépa et ça m'aurait bien aidé d'avoir un tel prof au lycée ! Continuez de sortir de telles vidéos svp.

    • @cainabel2553
      @cainabel2553 Рік тому

      Surtout les problèmes sont variés, faire un peu de tout c'est idéal. Il ne faut jamais s'installer dans les routines et les exos répétitifs! (Mauvais souvenir de profs chiants qui mettaient toujours le même type d'exo - ceux qui n'arrivaient pas à les faire n'y arrivaient pas plus à la n-ième fois. Il faut pas édulcorer les exos pour une poignée d'élèves qui ne comprennent pas et ne comprendront pas.)

  • @zelkaflore3830
    @zelkaflore3830 Рік тому +6

    Vous pourriez aussi décomposer 100 en produit de facteurs premiers pour observer tous ses diviseurs et enlever le risque d'en oublier👍🏾

  • @godfellas666
    @godfellas666 Рік тому +3

    C'est un bonheur de voir vos vidéos ...bravo..et surtout ne vs arrêtez pas

  • @theodricassurbanipalcremb
    @theodricassurbanipalcremb Рік тому +12

    Merci encore. Enseignant en histoire en collège,je n'ai de cesse de regarder tes vidéos. Rapide et pédagogique, tu insistes bien sur les réflexes à avoir notamment la factorisation et autres. Merci de nouveau.

  • @steevemcqueen5811
    @steevemcqueen5811 Рік тому

    vous etes le big boss des maths et je trouve votre exuberence d'explication touchante mille fois merci

  • @abdennaceurboughalleb9952
    @abdennaceurboughalleb9952 Рік тому +2

    plus simple 1/x + 1/y =1/10 équivaut x y -10 y = 10 x ou bien y(x - 10 ) = 10 x autrement y= 10 x / (x - 10 ) x et y positifs avec x et y supérieur ou égal a 11 pas de solution pour x = 10 enfin avec mon respect simplement on fixe une valeur de x et en conséquence on trouve la valeur correspondante a y simple équation y = f(x) NB: le nombre de solution est infini sur un domaine de x [11 ; + infini [ la condition que x et y soient des entiers ( surtout pour y ) nous ramène a une méthodologie anti - mathématique . merci pour votre attention

  • @guydorian1828
    @guydorian1828 Рік тому +4

    Merci pour ta chaîne.
    Je suis maintenant à la retraite mais j'ai eu 18/20 au bac scientifique. J'ai toujours aimé les maths, je faisais des maths en cours de philo !
    A chaque fois j'essaie de réfléchir à tes problèmes .
    Là je suis resté bloqué sur le 10(x+y)=x.y. J'ai essayé de développer comme toi mais ça ne donnait rien. Je n'ai pas pensé à la double factorisation !
    Tu as réussi à rendre vivants les cours de maths. Bravo !!!

  • @tanukitsuneko
    @tanukitsuneko Рік тому +7

    Il manque la vérification pour les valeurs négatives de x-10 et y-10 (x et y sont strictement positifs... pas x-10 et y-10), mais on s'aperçoit rapidement qu'elles ne sont pas possibles, car ça imposerait, à chaque fois, que x ou y soit négatif (ou, dans le cas -10x(-10), que x et y soient nuls, ce que l'énoncé exclut).

    • @cainabel2553
      @cainabel2553 Рік тому

      Heu... c'est par la que je préfère commencer : les solutions diff ont un des deux dénominateurs entre 11 et 19 et il y a le 20,20 évident. Cela se voit sans aucun calcul.

    • @ybart10
      @ybart10 Рік тому +1

      Oui, on a x > 0 et y > 0, donc x - 10 > -10 et y - 10 > -10, il faut donc considérer les nombres de -9 à -1 pour les facteurs solutions, avant des les éliminer car aucun couple négatif ne fonctionne :)

    • @moussakoukous5192
      @moussakoukous5192 Рік тому +2

      D'après l'equation et vu que x et y sont des strict positive on put deduire automatiquement que x et y sont strictement supérieur à 10

  • @DjilyFall-us7uz
    @DjilyFall-us7uz 8 місяців тому

    Vous avez vraiment un don de nous détendre et nous faire aimer les maths ❤ merci !

  • @lilindenil2605
    @lilindenil2605 9 місяців тому

    T'es formidable ❤ Merci. Tu présentes les maths comme un jeux. T'es un génie. Salut champion 🎉

  • @jim2376
    @jim2376 8 місяців тому

    Use the formula. If 1/a + 1/b = 1/c and a, b, and c are positive integers, then
    1/(c + 1) + 1/(c + 1)(c) = 1/c
    1/(10 + 1) + 1/(10 + 1)(10) = 1/10
    1/11 + 1/110 = 1/10
    (Note: the commutative property obviously applies to the LHS.)

  • @KahlieNiven
    @KahlieNiven 10 місяців тому

    Résolu de la même manière sur la première partie, en aboutissant à [y = 10x/(x-10)], mais en utilisant (x=20;y=20) comme point pivot (solution évidente) et 20>= y > 10 ; x > 10 car impossibillité technique sinon (on peut intervertir les limites sur x et y si x= 10y/(y-10) ).
    Donc 9 cas à tester: x:11, 12, 13, 14, 15, 16, 17, 18, 19 et y devant rester entier
    11 -> 110
    12 -> 60
    13 -> pas entier
    14 -> 35
    15 ->30
    16-> pas entier
    17-> pas entier
    18-> pas entier
    19-> pas entier
    puis inclure les symétriques (x et y intervertis)
    -> 4 couples, leurs symetriques, et (20 ; 20)
    PS: la manière est assez "sale", mais se fait de tête, sans papier ni tableau.

  • @nickelbriand
    @nickelbriand Рік тому

    Liste des solutions données par la fonction python/sagemath ( ou n importe quel module python donnant la liste des diviseurs d un nombre :
    Fonnction affichant la liste des solutions de 1/x +1/y = 1/n . n donné par l utilisateur
    def solve_1_div_x_plus_1_div_y(n):
    for i in divisors(n^2):
    if i > n : break
    j = n^2/i
    a = 1/(i + n)
    b = 1/(j + n )
    c = a+b
    print (f"{a} + {b} = {c} " )
    solve_1_div_x_plus_1_div_y(10)
    ========== Output =========================
    1/11 + 1/110 = 1/10
    1/12 + 1/60 = 1/10
    1/14 + 1/35 = 1/10
    1/15 + 1/30 = 1/10
    1/20 + 1/20 = 1/10
    On peut remarquer aussi que pour n premier , on n a que deux solutions : 1/2p + 1/2p = 1/p ; 1/p +1/(p^2+p) = 1/ p

  • @pneuneige
    @pneuneige Рік тому

    En python:
    import sympy
    x = sympy.Symbol('x')
    for y in range(11, 111):
    xi = sympy.solve(10*x/(x - 10) - y, x)
    #print(xi, y)
    if xi[0].is_integer:
    print(xi[0], y)
    on sait qu'il n'y a pas d'autres solutions car x>=11, y>=11 et si y>110 alors x

  • @philipperoux8926
    @philipperoux8926 9 місяців тому

    Interessant exercice .
    Surtout la recherche de la factorisation qui permet d obtenir le produit .

  • @lechaiku
    @lechaiku 5 місяців тому

    Let's make a generalization to such mathematical question.
    For such problem
    1/x + 1/y = 1/n
    where n is a prime number there are 3 solutions.
    The FORMULAS for solutions:
    1. (x,y) = (n(n+1), n+1)
    2. (x,y) = ((n+1), (n(n+1))
    3. (x,y) = (2n, 2n)
    Only three solution, because the square of a prime number (n^2) has three pairs of factors (three pairs of divisors):
    1) 1 * n^2
    2) n^2 * 1
    3) n * n
    there are 3 solutions ----> (prime number)^2
    Amount of divisors = amount of solutions = (2+1) -----> (exponent +1)
    If n is an even numbers there are much more solutions (it depends of an amount of divisors of n^2, and what they are like).
    Ex: if n = 6; n^2 = 36
    there are 9 solutions ----> 36 = 2*2*3*3 = 2^2 * 3^2
    Amount of divisors = amount of solutions = (2+1) * (2+1) = 3 * 3 = 9 -----> (exponent +1) * (exponent +1)
    Ex: if n = 8; n^2 = 64
    there are 7 solutions ----> 64 = 2*2*2*2*2*2 = 2^6
    Amount of divisors = amount of solutions = (6+1) = 7 -----> (exponent +1)
    Ex: if n = 10; n^2 = 100
    there are 9 solutions ----> 100 = 2*2*5*5 = 2^2 * 5^2
    Amount of divisors = amount of solutions = (2+1) * (2+1) = 3 * 3 = 9 -----> (exponent +1) * (exponent +1)
    If n is an odd numbers (but not a prime) there are much more solutions (it depends of an amount of divisors of n^2, and what they are like).
    Ex: if n = 9; n^2 = 81
    there are 5 solutions ----> 81 = 3*3*3*3 = 3^4
    Amount of divisors = amount of solutions = (4+1) = 5 -----> (exponent +1)
    Ex: if n = 15; n^2 = 225
    there are 9 solutions ----> 225 = 3*3*5*5 = 3^2 * 5^2
    Amount of divisors = amount of solutions = (2+1) (2+1) = 9 -----> (exponent +1) * (exponent +1)
    Ex: if n = 25; n^2 = 625
    there are 5 solutions ----> 625 = 5*5*5*5 = 5^4
    Amount of divisors = amount of solutions = (4+1) = 9 -----> (exponent +1) * (exponent +1)
    The FORMULA for factors:
    (x - n)(y - n) = n^2

  • @frankjeusette9793
    @frankjeusette9793 Рік тому +1

    En tant que mathématicien, j'adore vos vidéos pour leur qualité pédagogique. Ici, sans pinailler ;-), je pense qu'il y a une faiblesse dans le raisonnement car si x et y sont des entiers positifs, vous n'expliquez pas pourquoi (x-10) et (y-1O) sont aussi des entiers positifs. C'est nécessaire de s'en assurer, sinon quand vous faites les combinaisons possibles pour obtenir 100 par multiplication, vous devez également tenir compte des entiers négatifs (ex : -5 x (-20) ) et ne pas vous limiter aux combinaisons positives et puis ensuite rejeter les solutions quand x ou y que l'on obtient est négatif ou nul.
    Pour éviter ce problème, je l'ai fait d'une autre façon, en démontrant que x et y doivent tous les deux êtres supérieurs à 10. J'ai alors fait un changement de variables : x = 10 + s et y = 10 + t. Ce changement de variables permet d'arriver à s . t = 100 (où s et t sont des entiers strictement positifs) sans devoir passer par la mise en évidence forcée.

    • @cainabel2553
      @cainabel2553 Рік тому

      Il fallait avant tout regarder les solutions (toutes, même réelles, juste positives), c'est facile. L'interval de ces solutions est évident.
      J'aurais commencé par là.

  • @sylvainbillangeon
    @sylvainbillangeon 6 місяців тому

    j'en ai une puissante sur ce coup là : 1/x + 1/y = 1/10 donc x = 20 et y = 20, donc 1/20 + 1/20 = 1/10 car 2/20 = 1/10. si c'était comme ça il n'y aurait pas de vidéo ! merci Hedacademy !

  • @guerleymixhaiti6057
    @guerleymixhaiti6057 Рік тому +1

    Je comprend lorsque tu explique mais c'est différent pour moi a l'école merci je suis Haïtien

  • @mdv6751
    @mdv6751 Рік тому

    Brillante explication de l'utilité de la factorisation.

  • @huyxiun2085
    @huyxiun2085 Рік тому

    La clef qui me manquait, c'est "tout simplement" rappeler que pour ce genre de problèmes (résolution avec entiers positifs), il faut ramener le problème à un produit.
    Sauf que ça n'a rien de simple. Et j'ai un sérieux problème avec ça : d'où ça vient, ça ?
    Comprenez bien. C'est "simple" quand on a vu le truc au moins une fois. On applique deux trois fois l'exercice, le concept, et ça devient acquis. Une fois acquis, on le sait, et c'est magique. Tout comme on "sait" que 1+1 = 2, on "sait" la commutation des multiplications, on "sait" factoriser, etc.
    Mais d'où ça vient, tout ça ?
    Autrement dit : si on ne vous dit jamais le "truc", comme pouvez-vous le trouver ? Et je ne parle pas d'être chanceux et, d'à force de tourner le problème dans tous les sens, finir par découvrir (redécouvrir) la méthode. C'est très bien si vous y parvenez, et je suis sûr que les tronches qui y parviennent ont un bien meilleur "feeling" de la chose. Mais ça ne change rien au problème. Vous avez trouvé une recette, vous l'appliquez, mais même vous, je suis sûr que vous avez cette petite frustration : avez-vous réellement "compris" ?
    Moi, j'aimerais comprendre POURQUOI ramener ce genre de problème à une multiplication permet de résoudre le problème. Y'a-t-il d'autres méthodes ? S'il n'y en a pas d'autres, pourquoi est-ce la seule ? S'il y en a d'autres, mais toutes pourries, pourquoi sont-elles pourries ?

    • @wasabissu5020
      @wasabissu5020 Рік тому

      Une autre méthode qui marche parfois faut voir les solutions et ensuite pour montrer que ce sont les seuls tu réduis le nombre de solutions à un certain ensemble de nombre, et ça marche qu'avec les nombres entiers parce que sur un intervalle sur lequel tu réduirais les solutions bah tu peux pas tout tester.
      Personnellement me demander des trucs évidents comme pourquoi les règles classiques de calcul fonctionne dans N c'est quelque chose que j'adore faire donc j'apprécie ton questionnement

  • @FatimaFatima-bd6co
    @FatimaFatima-bd6co Рік тому +1

    Merci pour cette vidėo , pouvez vous nous faire une vidéo sur la définition de la racine carrée par une mėthode simple pour faire comprendre nos enfants.

  • @draconsilver
    @draconsilver Рік тому +25

    J’ai instantanément pensé à x=y=20.
    Étonné qu’il y aie d’autres solutions.

    • @nicodb
      @nicodb Рік тому +1

      Idem 😲

    • @PACTRIXO
      @PACTRIXO Рік тому +2

      J'ai aussi immédiatement pensé à ça !

    • @chiboudah4816
      @chiboudah4816 Рік тому +1

      Moi aussi

    • @triplem1812
      @triplem1812 Рік тому +2

      #metoo

    • @cainabel2553
      @cainabel2553 Рік тому

      Partir de 20,20; ensuite il est évident que les solutions sont forcément entre 11 et 19 pour le petit dénominateur. Cela permet de tester par un programme si
      1) on est bourrin
      2) on veut pas faire d'algèbre
      Si on n'est pas bourrin, ça sert de voir que a-10 > 0 donc on reste sur les entiers positifs lors de la démonstration

  • @kanyamagaraabdallah8300
    @kanyamagaraabdallah8300 Рік тому

    Merci souvent je vous suis et je suis d'accord avec vous dans tous vos cours de Maths et je vous remercie et vous encourage beaucoup !

  • @otywun
    @otywun Рік тому +2

    Équation très intéressante, merci 👍🏼

  • @alexandrewislet9673
    @alexandrewislet9673 Рік тому +5

    bonjour tu as fait une petite faute à @8:50 tu a écrit 4 et pas 14 quant tu interverti X et Y sinon super vidéo comme d habitude

  • @clovistauber984
    @clovistauber984 Рік тому +2

    Géniales vos vidéos. Pourriez vous indiquer dans la description le niveau scolaire auquel correspond le problème posé ?

    • @ft6840
      @ft6840 Рік тому

      c'est des équations de 2nde/première, mais on commence en 4ème ce genre de réflexion, souvent en 4ème c'était des questions bonus qui enlevaient pas de point

    • @clovistauber984
      @clovistauber984 Рік тому

      @@ft6840 ok merci. Je l'ai posée à mon fils qui est en 4ème justement, mais ils n'avaient pas encore vu la manipulations des équations donc ça a été l'occasion de lui montrer

    • @wasabissu5020
      @wasabissu5020 Рік тому

      Je suis pas absolument sur de ce que je vais dire mais pour moi avant la terminale, avec les maths expertes, tu n'as aucune notion d'arithmétique et donc tu peux pas résoudre l'exercice

  • @GraskaWolf
    @GraskaWolf Рік тому

    Le meilleur prof de math

  • @thomassinxavier4976
    @thomassinxavier4976 Рік тому

    Ce problème admet une jolie généralisation. Si n est un entier strictement positif, notons f(n), le nombre de couples (x;y) d'entiers strictement positifs solutions de l'équation 1/x+1/y = 1/n. On peut déterminer f(n) et caractériser les nombres premiers : ce sont les seuls entiers n pour lesquels f(n) = 3. Un joli problème pour des terminales.

    • @a.t9098
      @a.t9098 Рік тому

      Je l'ai fait, exo très sympathique effectivement. D'ailleurs, voici les solutions générales que j'ai trouvé : (n^2 + n; n+1), (n+1; n^2 + n), et (2n;2n)

  • @robertcaparros9673
    @robertcaparros9673 Рік тому +1

    Merci Professeur ! Toujours aussi didactique !!!! 😜👍

  • @philippeduperrin8624
    @philippeduperrin8624 Рік тому

    A noter : chatgpt donne des solutions complètement fausses. : " The equation (1/x) + (1/y) = (1/10) can be rewritten as 10/(xy) = 1, which gives xy = 10.
    Now we need to find two numbers x and y whose product is 10. One way to do this is to list the factors of 10 and try different combinations:
    1 * 10 = 10
    2 * 5 = 10
    So, the solutions to the equation are x = 2 and y = 5 or vice versa, i.e., x = 5 and y = 2.
    Therefore, the possible solutions are:
    x = 2, y = 5
    or
    x = 5, y = 2
    Note that both solutions give the same equation (1/x) + (1/y) = (1/10)"

  • @MarcOcomar-b1u
    @MarcOcomar-b1u Рік тому

    le produit en croix n'est pas une règle mais le résultat d'une règle : multiplier les deux membres d'une (in)égalité par un même nombre !!
    ici je multiplie les deux membres par 10xy et j'obtiens directement 10x + 10y = xy
    😉

  • @gegetlse
    @gegetlse Рік тому

    Mais qu'il est joueur ! Un vrai régal ces vidéos ^^ Merci encore !

  • @Ctrl_Alt_Sup
    @Ctrl_Alt_Sup Рік тому +5

    Comme toujours, l'amphi est plein pour assister au spectacle 👍

  • @LegbaPapa
    @LegbaPapa Рік тому

    Très chouette vidéo encore! :)
    Je n'ai jamais "compris" le concept du produit en croix perso. Disons que je trouve que c'est un artifice superflu. Presque un "mot en trop".
    Là, c'est flagrant que ça ne sert à rien.
    Tu dis au départ de mettre au même dénominateur la partie de gauche. Faut faire idem à droite direct, tout mettre au même gauche/droite! Du coup, un fois fait, on peut simplement virer tous les dénominateurs de l'équation.
    Ce qui revient au même donc que le produit en croix. On arrive à "10y+10x=xy", et on peut évacuer cet artifice si je peux dire, puisqu'on a fait la démarche en toute connaissance de cause. :)
    Après, sur la vidéo en l'occurrence, j'aurais bien aimé que tu mettes en évidence pourquoi la solution n'est pas unique. Pas juste le montrer, mais l'expliquer, même grossièrement.
    Cela dit, ça déborderait largement de ta vidéo! ^_^
    Vive les maths et tes vidéos!
    Des bisous!

  • @erictrefeu5041
    @erictrefeu5041 Рік тому

    d'une façon générale l'équation 1/x +1/y =1/n admet d(n²) couples de solutions entières où d(n²) est le nombre de diviseurs de n². Ces solutions sont x=n+d et y= n.(n+d)/d où d est un diviseur de n².
    .....sachant cela, sauriez vous trouver toutes les solutions entières de 1/x² +1/y² = 1/z² ???!!
    comme par exemple:
    1/15² + 1/20² = 1/12² ou 1/65² +1/156² = 1/60²

  • @BassidiKone-rq5rb
    @BassidiKone-rq5rb Рік тому

    J'aime bien vos cours 💕. Grâce à vous, j'ai compris le théorème de Pythagore mais vous expliquer vos cours rapidement.

    • @scipl9619
      @scipl9619 Рік тому

      Il devrait faire vite pour eviter que ces vidéos ne deviennent longues ...

    • @simonflament3912
      @simonflament3912 Рік тому

      ralentit le rythme de la video si ça va trop vite pour toi

  • @manixmokoninguinia7942
    @manixmokoninguinia7942 Рік тому

    Bonsoir je voudrais que vous me former en mathématique. Vous êtes très bon et je comprends vite avec votre explication.

  • @yasrez2310
    @yasrez2310 Рік тому

    en omettant les conditions que x et y soient des entiers positifs et si on part de cette équation en isolant une des variables (c.a.d x=f(y) ou y=f'(x)) on arrive a une seul solution y= 1 et x= -10/9

  • @Gamerjfe
    @Gamerjfe 11 місяців тому

    Merci😊

  • @joseph-desirezeze3014
    @joseph-desirezeze3014 Рік тому

    On aurait pu aussi poser S=x+y et P=xy ainsi P=10S et par suite , on se ramène à une équations du 2nd degré x^2 - Sx +10S = 0.

  • @user-FMWM
    @user-FMWM Рік тому

    Je pose X=1/x et Y=1/y
    1/x + 1/y = 1/10 ==> X+Y = 1/10
    Je pose X=Y ==> 2X = 1/10
    X = 1/20
    Y= 1/20
    Au final x=20 et y=20 : une solution très rapide

  • @7esens
    @7esens Рік тому

    Merci pour tes supers cours

  • @michallesz2
    @michallesz2 10 місяців тому

    1/x + 1/y = 1/10
    IF x=y then 1 + 1 = 2 then 2/x = 1/10 => x=20 and y=20

  • @z-ryk
    @z-ryk 11 місяців тому

    1/x + 1/y = 1/10
    => y/xy + x/xy = 1/10
    => (x+y)/xy = 1/10
    => 10x+10y = xy
    => xy -10x -10y = 0
    => x(y-10) -10y = 0
    => x(y-10) -10(y-10) -100 = 0
    => (y-10)(x-10) = 100
    Diviseurs de 100 : 100*1 , 50*2 , 25*4 , 20*5 , 5*20 , 4*25 , 2*50 , 10*10 , 1*100
    D'où :
    y-10 = 100 ET x-10 = 1 => y = 110, x = 11
    y-10 = 50 ET x-10 = 2 => y = 60, x = 12
    y-10 = 25 ET x-10 = 4 => y = 35, x = 14
    y-10 = 20 ET x-10 = 5 => y = 30, x = 15
    y-10 = 10 ET x-10 = 10 => y = 20, x = 20
    y-10 = 5 ET x-10 = 20 => y = 15, x = 30
    y-10 = 4 ET x-10 = 25 => y = 14, x = 35
    y-10 = 2 ET x-10 = 50 => y = 12, x = 60
    y-10 = 1 ET x-10 = 100 => y = 11, x = 110
    D'où les solutions S= {
    {y = 110, x = 11},
    {y = 60, x = 12},
    {y = 35, x = 14},
    {y = 30, x = 15},
    {y = 20, x = 20},
    {y = 15, x = 30},
    {y = 14, x = 35},
    {y = 12, x = 60},
    {y = 11, x = 110}
    }

  • @cs61961
    @cs61961 Рік тому

    Merci pour ces friandises mathématiques !
    Pour ma part c'est la méthode bourrin avec Excel. (Mais sans réflexion sur la valeur max. que j'ai mise au pif à 150) Lorsque la valeur de la colonne x+y est égale à la valeur xy/10 la cellule se met en surbrillance. La colonne x est figée et je modifie uniquement la première valeur de y qui se recopie ensuite dans les lignes suivante. On trouve aussi comme ça...

    • @cainabel2553
      @cainabel2553 Рік тому

      Hein? Sans réflexion profonde, sans algèbre, sans papiers et sans prise de tête :
      - toujours commencer par observer symétrie
      - donc soit on a le cas limite a = b soit on prend a < b
      Le cas limite facile de tête 1/20*2 = 1/10
      Donc autres cas :
      1/a < 1/10 donc a>10
      1/a > 1/20 (puisque a

  • @ryhorabramovich1457
    @ryhorabramovich1457 Рік тому

    Another way, let's assume that all fractions are parts of ONE HOUR and convert it to minutes. Then, 1/10 (h) = 6 (min). Now enough check all possibles sums of two positive integers which are equal 6. E.g., 6 = 5+1 => 1/x = 5 (min) = 1/12 (h) => x = 12, and 1/y = 1 (min) = 1/60 (h) => y = 60, etc.
    Sorry, I don't speak French.
    Best of luck.

  • @nippon19
    @nippon19 Рік тому +1

    J'sais pas pourquoi j'pensais qu'il y aurait moins de couples de solutions !
    Super vidéo !

  • @azeroualnaima3567
    @azeroualnaima3567 Рік тому

    Pouvez vous nous faire une vidéo sur l'encadrement d'une racine carré à l'unité, au dixième et au milième près merci .

  • @amraouiahmed4245
    @amraouiahmed4245 Рік тому

    Bonjour
    Pourquoi vous n'avez pas pensé aux solutions des produits négatifs ?
    -10×(-10)=100 par exp ou -50× (-2......etc

  • @thierrydanis395
    @thierrydanis395 Рік тому +1

    petite erreur de recopie à 8:47 x=14 en noir doit devenir y=14 en orange, mais sur le tableau il y a y = 4

    • @hedacademy
      @hedacademy  Рік тому +1

      J’avais vu au montage.. Rien ne t’échappe 😅

  • @Obikin89
    @Obikin89 Рік тому

    (20;20) est facile à trouver puisque 2/20 = 1/10... J'avais bien l'intuition qu'il y avait d'autres solutions et j'ai cherché un peu à tâtons : 1/100 + 9/100 (100 non divisible par 9 donc ça ne marche pas), etc... Trouver les autres solutions s'avère être assez compliqué, surtout quand on ne sait que faire de l'équation. Beau retournement de cerveau pour y arriver, mais c'est une méthode à connaître.

    • @cainabel2553
      @cainabel2553 Рік тому

      Il fallait voir que
      1/(n+1) + 1/(n*(n+1)) = 1/(n+1) + 1/n * 1/(n+1)
      = (1 + 1/n) * 1/(n+1)
      = (n+1)/n * 1/(n+1)
      = 1/n
      Ce qui donne 1/11 + 1/110 = 1/10
      qui marcherait aussi pour :
      1/3 + 1/6 = 1/2
      1/4 + 1/12 = 1/3
      Donc pour tout N l'équation 1/a + 1/b = 1/N a deux solutions aux extrémités de l'interval des solutions; cette paire extrême de couples (a,b) "encadre" les autres solutions.

  • @jeanjacquespascaud2746
    @jeanjacquespascaud2746 Рік тому

    Hedacademy....C'est du nanan. 👍🤨🤩🙂😇

  • @MrDiagorasofmelos
    @MrDiagorasofmelos Рік тому

    Je retrouve avec vos vidéos la délicieux moment où en court de math ça faisti "tilt" et j'avais compris. Merci monsieur.

  • @AlbertATANTSI
    @AlbertATANTSI Рік тому

    C'est cool ❤GR2.2 n1

  • @milouzeouze9166
    @milouzeouze9166 Рік тому

    le jeux d acteur au moment du "ah non , tu peux pas les changer là " (7min02) vaut un Cesar ahahah Merci encore pour ton boulot , chapeau !

  • @Yasso698
    @Yasso698 Рік тому

    J'ai plus l'âge des bancs d'école mais très vidéos très ludiques et pédagogiquement me régalent 😅👏

    • @hedacademy
      @hedacademy  Рік тому

      J’en suis ravi 😁 merci pour le message

  • @melhemhamade4210
    @melhemhamade4210 Рік тому

    On construit x^2-Sx+P=0
    où S est x+y et P est x×y
    Delta=S^2-4×1×4P=S^2-4×1×10S=
    S×(S-40)
    Racine unique si Delta=0
    Donc si S=40
    Donc si x=y=20

  • @christagneaudedieuballou3357

    Super... rien à dire de plus

  • @KDS-be2zd
    @KDS-be2zd Рік тому

    S'il Vous Plait Prof Est-il Possible De Faire Une Vidéo Sur Comment Démontré Que r(-2;-3) Est Un Centre De Symétrie De La Courbe. ?

  • @Issouization
    @Issouization Рік тому

    Comment s'appelle ce type de raisonnement ? J'étais arrivé jusqu'à l'étape de factorisation par y-10

  • @cyruschang1904
    @cyruschang1904 Рік тому

    1/x + 1/y = 1/10
    (x + y)/xy = 1/10
    10x + 10y = xy
    x = n => 10n + 10y = y(n) => y = 10n/(n -10) => pour que x et y soient enters et positifs => x = n > 10, y = m et 10n = m(n - 10)
    x = n = 11 => y = m = 110 ☑️
    x = n = 12 => y = m = 60 ☑️
    x = n = 13 => y = 130/3 ❌
    x = n = 14 => y = 35 ☑️
    x = 15 => y = 30 ☑️
    x = 16 => y = 160/6 ❌
    x = 17 => y = 170/7 ❌
    x = 18 => y = 180/8 ❌
    x = 19 => y = 190/9 ❌
    x = 20 => y = 20 ☑️
    x = 21, ... 29 ❌
    On a donc (x, y) = (11, 110), (12, 60), (14, 35), (15, 30), (20, 20), (30, 15), (35, 14), (60, 12), (110, 11)

  • @patrickbascoul8685
    @patrickbascoul8685 Рік тому

    Merci

  • @Keor-x8l
    @Keor-x8l Рік тому

    Wah! Je n'aurai pas trouvé. Merci :)

  • @brudisinespresso8042
    @brudisinespresso8042 Рік тому

    Trop trop fort !

  • @hermesthrms4223
    @hermesthrms4223 Рік тому

    Super intéressant, je regrette de ne pas l'avoir eu comme prof de math...

  • @kensumsa4545
    @kensumsa4545 9 місяців тому

    J ai une question :
    N’auraitt on pas pu ecrire x(y-10)-10(y-10+10)?

  • @neufoctobre1416
    @neufoctobre1416 Рік тому

    Sinon vu qu'il est précisé que x et y sont strictement positif est ce qu'on pourrais pas directement inverser toute la fraction sa nous donnerai x+y=10, et du cou Vx∈]0;10[ x=10-y , et Vy∈]0;10[ y=10-x

  • @michelbernard9092
    @michelbernard9092 Рік тому +2

    Qui résoudra cet exercice pour X et Y éléments de l'ensemble des entiers relatifs Z ?

    • @Ctrl_Alt_Sup
      @Ctrl_Alt_Sup Рік тому

      À chaque couple (x;y) d'entiers positifs déjà trouvé
      on ajoute les couples (-(x-20);-(y-20))

      (11;110) -> (9;-90) car 1/9-1/90=10/90-1/90=9/90=1/10
      (12;60) -> (8;-40) car 1/8-1/40=5/40-1/40=4/40=1/10
      (14;35) -> (6;-15) car 1/6-1/15=1-4/60=6/60=1/10
      (15;30) -> (5;-10) car 1/5-1/10=2/10-1/10=1/10
      et respectivement pour chaque couple (x;y) on ajoute le couple (y;x)
      (20;20) -> (0; 0) ne peut être ajouté par définition du problème.
      La courbe y=10x/(x-10) est symétrique par rapport à la droite y=-x+20
      Intuitivement j'ai trouvé la transformation des valeurs des couples,
      soit soustraire 20 et multiplier par -1.
      Graphiquement et par symétrie, la partie droite de la courbe (où sont les couples positifs) est exactement la même que la partie gauche (où sont les couples relatifs).
      Il suffit d'appliquer à la partie droite une translation x=-20 y=-20 puis une symétrie par rapport à y=-x (ou une rotation de 180°).
      Il doit exister une façon correcte de justifier cette solution...

    • @michelbernard9092
      @michelbernard9092 Рік тому

      @@Ctrl_Alt_Sup Merci et bravo pour votre peine d'avoir cherché et trouvé, voici la justification de vos calculs :
      (il n'y a pas beaucoup de challengers!!)
      y=10x/(x-10) est une fonction homographique, elle a donc un centre de symétrie centrale
      situé à l'intersection de ses asymptotes qui sont les droites y=10 (quand x-->oo) et x=10
      (qui fait tendre y vers l'oo.)
      Le centre de symétrie est donc S(10;10).
      Ainsi, si le point M(x,y) est solution entière de l'équation ; son symétrique
      a pour coordonnées N(20-x ; et 20-y) qui sont aussi des nombres entiers !
      On trouve les coordonnées de N en écrivant juste que MS=SN la solution (20 20) ayant pour symétrique (0,0) doit être
      supprimée, n'appartenant pas au domaine de définition.
      Sinon, on a tout à fait le droit d'utiliser les diviseurs négatifs de 100
      Bien sûr on retrouve la même chose
      par exemple -1 est un diviseur de 100 donc il faut résoudre x-10=-1 et x=9
      d'où x=90 de même -2 est diviseur de 100 donc x-10=-2 x=8 y=-40
      et ainsi de suite pour les autres diviseurs -4, -5 ((( -10))) -20 -25 -50 -100 ça ne fonctionne pas pour x-10=-10 ce qui donnerait x=0 valeur interdite.
      Rappel, une fonction homographique s'écrit en général y=(ax+b)/(cx+d), elle a pour asymptotes y = a/c et x=-d/c point de symétrie centrale S(a/c ; -d/c) son sens de variation est donné par det (abcd)=ad-bc elle est soit toujours croissante soit toujours décroissante.

    • @Ctrl_Alt_Sup
      @Ctrl_Alt_Sup Рік тому

      @@michelbernard9092
      Merci beaucoup pour vos explications et pour avoir pris le temps de lire ma description approximative.
      J'avais remarqué que la fonction ressemblait à y=1/x mais je ne connaissais pas la notion de fonction homographique et ses propriétés.

    • @michelbernard9092
      @michelbernard9092 Рік тому

      @@Ctrl_Alt_Sup OUI ! en fait avec des changements de variables appropriés en relation avec le point de symétrie S (par translation du repère (O, i, j) du point O vers le point S donc dans le repère (S,i, j), toute fonction homographique y=(ax+b)/(cx+d) peut s'écrire Y=k/X avec k réel.

    • @charlescostes1076
      @charlescostes1076 Рік тому

      J'ai cherché à trouver des couples (x;y) appartenant à Q, ensemble des rationnels.
      Exemple de couple solution : 100/3 et 100/7.
      On a bien 3/100 + 7/100 = 1/10.

  • @pedagogia8038
    @pedagogia8038 Рік тому

    Merci bien

  • @tyloser1255
    @tyloser1255 Рік тому

    La technique du grappe de raisins en voulant chercher les même facteurs commun... Vraiment bien joué. 😮 Waou !!!

  • @CaptainDangeax
    @CaptainDangeax Рік тому

    ça me rappelle mes cours d'électronique, quand on doit déterminer deux résistances R1 et R2, en connaissant la valeur de l'impédance équivalente en parallèle, 1 sur impédance équivalente égal 1 sur r1 + 1 sur r2

    • @wasabissu5020
      @wasabissu5020 Рік тому

      Et tu supposais tes résistances comme étant des entiers 😂 ( en vrai je rigole c'est plutôt une bonne analogie)

  • @119Minutes
    @119Minutes Рік тому

    "On vérifie", "On vérifie quand même" ... Mais trop ! J'arrête pas de le dire à mon gosse ;)

  • @jeffh.8251
    @jeffh.8251 Рік тому

    un plaisir, merci

  • @johannescharvolinYT
    @johannescharvolinYT Рік тому +1

    Bigre, rarement tes vidéos m'avaient autant largué. Clairement, je n'ai pas du tout le niveau.
    Histoire de me faire une idée, cette équation correspond à quel niveau scolaire actuel ?
    (pour info, j'ai eu un très bon niveau en maths jusqu'en 3ème. Ensuite, mes choix d'orientation ont fait que je n'en ai pour ainsi dire plus jamais fait. Et c'était il y a lontemps...)

    • @michelbernard9092
      @michelbernard9092 Рік тому

      A mon avis, un bon élève de 3ième peut comprendre la solution, mais pour le résoudre c'est plutôt 2nd / 1ère

    • @booli8542
      @booli8542 Рік тому

      La solution peut être comprise par un bon collégien, mais pour résoudre l'exercice sans aucun indice (avec cette factorisation "artificielle"), il n'y a pas vraiment de niveau scolaire. Un matheux bac +5 peut passer à côté, c'est pas quelque chose qu'on fait souvent.

    • @matheomatouan5171
      @matheomatouan5171 Рік тому

      @@booli8542 je suis en prépa PSI (en gros 10h de maths par semaine), mais j'avoue que j'avais pas pense à l'astuce donc ouai

    • @johannescharvolinYT
      @johannescharvolinYT Рік тому +2

      @@michelbernard9092 et @Booli Merci pour votre retour, qui me confirme qu'au moins, je n'ai pas régressé.
      C'est frustrant d'être très curieux des sciences, mais d'avoir un si piètre niveau.
      Allez, en guise de remerciement, et en hommage au pseudo de Booli, une petite blague qui m'a fait rire.
      Deux anciens amis et collègues, tous deux statisticiens de métier et férus de logique booléenne, se rencontrent par hasard alors qu'ils se sont perdus de vue depuis des années.
      - Oh ! Bernard ! Ca, ça me fait plaisir de te revoir, comment tu vas ?
      - Moi aussi Lucien, ça me fait plaisir ! Ah ça va, ça va sacrément bien même... Tu te souviens de la grande Laurence, dont on était tous amoureux mais que personne n'osait aborder ??? Ben je l'ai mariée, dis-donc.
      - Mince ! Chapeau mon vieux !
      - Attends, le meilleur... On vient d'avoir un enfant !
      - Félicitations ! C'est une fille ou un garçon ?
      - Ouiiii !

    • @michelbernard9092
      @michelbernard9092 Рік тому

      @@booli8542 Voir ma solution sans cette factorisation sortie du chapeau . Ceci dit c'est quand même un truc courant de le faire, particulièrement pour décomposer les fractions rationnelles en éléments simples à des fins d'intégration ou de sommes télescopiques, mais dans ce cas c'est effectivement un truc de math-sup.

  • @vinvin9432
    @vinvin9432 Рік тому

    super video ^^

  • @guypernot8944
    @guypernot8944 Рік тому +1

    j aurai voulu vous avoir en math

  • @stephank4178
    @stephank4178 Рік тому

    Hello. En utilisant les propriétés de la moyenne harmonique. L'équation 1/x+1/y=1/10 est équivalente à 2/(1/x+1/y) = 20, c'est-à-dire que la moyenne harmonique de x et y est 20. Or on sait que min(x, y)

    • @stephank4178
      @stephank4178 Рік тому

      On peut aussi résoudre l'équation visuellement à l'aide d'un logiciel de géométrie. Choisir un nombre e, dont la valeur n'a pas d'importance mais résultera en un dessin plus ou moins joli. Placer les points A(0, 0); B(10, 0); C(10, e); P(x, 0) avec 10

  • @jerems-nmrgra8713
    @jerems-nmrgra8713 Рік тому

    Salut! Super video comme d habitude.
    Est ce que tu acceptes les questions aussi? J ai tjs ete nul en math et donc j ai pas la logique du trucs. Je travaille dans une boite et on vend des packagings a des ecoles. On vend a l unite a 2 euros et on fait le 3eme gratuit. Donc je fais le calcul avec des batons et un tableau cest mega chiant. Et si je fait une reduction de 33 pourcent ca donne pas le bon resultat. Cest quoi que je fais de travers stp?

    • @boulettefranck2627
      @boulettefranck2627 Рік тому

      Vous aboutissez à un nombre irrationnel (1/3) qui ne peut pas s'écrire sous la forme d'une fraction (réduction de 33,3333333...%). Vous êtes donc obligé de faire un arrondi pour pouvoir faire des calculs. Et, mécaniquement, si vouseffectuez des calculs à partir de chiffres arrondis, cela débouche sur des résultats arrondis, donc inexacts.

  • @lamiasekkal1891
    @lamiasekkal1891 7 місяців тому

    Excellent pedagogue

  • @loupiat2173
    @loupiat2173 Рік тому

    Il ne faut pas être visionnaire, il faut être halluciné pour trouver des solutions pareilles !!
    😅😂🤣... en tous cas encore un grand merci !

    • @hedacademy
      @hedacademy  Рік тому

      😂😂 merci pour ce message

  • @anonyx1896
    @anonyx1896 Рік тому

    On peut proposer cet exercice à partir de quel niveau svp ? (j'hésite entre 1ère ou Terminale)

    • @siyahgul5755
      @siyahgul5755 Рік тому +1

      Je pense que ça dépend du niveau du lycée. Étant étudiant en L2, je dirais plutôt terminale pour un lycée ayant un niveau "modeste".
      Et encore sans l'astuce de forcer la factorisation par (y-10) et sans aller chercher une astuce sur internet, pas sûr que beaucoup trouve l'ensemble des solutions.

    • @anonyx1896
      @anonyx1896 Рік тому +1

      @@siyahgul5755 je suis d'accord avec toi, mais je pencherais plus sur niveau terminale car déjà la factorisation forcée n'est pas évidente et en plus remarquer qu'il y a différents cas qui donnent 100 et les trouver toutes, enfin x et y qui jouent des rôles symétriques ça fait beaucoup ^^

    • @siyahgul5755
      @siyahgul5755 Рік тому +1

      @@anonyx1896 dit comme ça... Ça fait beaucoup en effet !

    • @cainabel2553
      @cainabel2553 Рік тому

      Tu sais en fac DEUX 1ère année on nous posait des exos que je trouvais difficile... et bien je tombe sur des vidéos de maths sur des concours et je retrouve des choses similaires. On a survécu.
      Tu proposes des choses dures? En 6e il y a eu un devoir à faire à la maison où les parents se sont plaint... mais je pense que tout le monde a survécu.
      MOI perso (j'assume ma complète subjectivité) je dis que le pire est de ne faire que des choses VRAIMENT très accessibles, très répétitives, et après on appréhende un max. Il n'y a rien de pire (toujours selon moi) que de faire toujours les mêmes choses pour "rassurer", en fait tu humilies les élèves sans le vouloir.
      Genre faire seulement de la géométrie plane pendant presque tout le collège et le début de lycée et juste à la fin avant le bac tu fais un peu dans l'espace, ça intimide, même les bons élèves.
      Tout ça pour l'exo de spécialité au bac avec le triangle équilatéral sur le diagonales d'un cube... non mais allo quoi. Il fallait voir que les face d'un cube sont identiques, la vache.
      Quand j'arrive à faire des exos d'examens tout en regardant la télé... le bug. (Je ne parle pas du CAPES de l'année dernière avec le tier des questions se fait facilement de tête en écoutant une série télé.)
      Il faut mettre des difficultés tout le temps.
      Il suffit de ne pas mettre que des choses dures, comme ça personne n'est totalement en situation d'échec.

    • @cainabel2553
      @cainabel2553 Рік тому

      @@anonyx1896 Si tu arrives au lycée sans être capable d'utiliser la commutativité de l'addition (qui était vu en 6e, il n'y a pas si longtemps, je ne parle pas de remonter à 1950) ... trouve une voie avec très très peu de math. C'est quand même le minimum, et les symétries servent énormément.
      Mais je pense que si tu n'as pas ces réflexes c'est juste le manque d'entrainement.

  • @lesptitsmolieres1283
    @lesptitsmolieres1283 Рік тому +1

    Possible de trouver en 30sec en dissociant 1/10 en 1/20 + 1/20 puis x=y=20 bien vu

  • @Gamerjfe
    @Gamerjfe 11 місяців тому

    Quelle le nombre de x et y

  • @ilafya
    @ilafya Рік тому

    Il y’a une autre solution complexe de la forme x=(1+isqr(39)/2 et y=(1-isqr39)2

    • @erictrefeu5041
      @erictrefeu5041 Рік тому

      oui exact mais ce n'est pas une solution entière

  • @denilsondorcelhomme7091
    @denilsondorcelhomme7091 Рік тому

    C' est si simple et vous ,vous compliquez cette équation depuis au paravent x et y =10 dont x=10 et y=10 il complique les choses pour allonger la video

  • @Shakalito-93
    @Shakalito-93 Рік тому

    à 8:48 un '1' a été oublié pour y , y =14 ,

  • @rekiaouhaji4776
    @rekiaouhaji4776 Рік тому

    1/ 1-اس 5 + 1/1-اس 5 = ؟ سقط الظرس ليست معادلة صالحة للنقاش .،

  • @Mathax-sl1vd
    @Mathax-sl1vd Рік тому +2

    A un moment il y a marqué y=4 au lieu de y=14
    Continues comme ça t es au top

    • @letnz6788
      @letnz6788 Рік тому

      J'pense qu'il va devoir éditer la vidéo et corriger son oubli ! 😃

  • @davids.watson7342
    @davids.watson7342 Рік тому

    😅 Iman est tellement expressif que je regarde les vidéos sans le son et j’arrive à le comprendre 😂. Vous êtes super Iman, merci pour la passion et l’enseignement! 🎉

    • @hedacademy
      @hedacademy  Рік тому

      C’est adorable merci 😍😍

  • @inkerebutsitv
    @inkerebutsitv Рік тому

    Merci beaucoup mais j'aimerais vous demander d'y aller lentement car vous y allez très vite.

  • @williamsocrate7714
    @williamsocrate7714 Рік тому

    simple, ça saute aux yeux : x=y=20, hé oui un 20e + un 20e, ça fait un 10e !!!

  • @judithblais5801
    @judithblais5801 Рік тому

    Punaise, je comprends rien mais j'aimerais donc comprendre. ;-)

  • @jean-michelpascal7722
    @jean-michelpascal7722 Рік тому

    N'y a t-il pas en solution x=0 et y=0 ? Bravo pour toutes tes vidéos, je suis fan!!!! Jean-Michel

    • @vonwthaud289
      @vonwthaud289 Рік тому

      Problème c'est que 1/0 c'est interdit

    • @kouhouninaodilon9680
      @kouhouninaodilon9680 Рік тому

      Les gens cherche comment avoir l'argent vous c'est les x et y qui vous intéressent

    • @vonwthaud289
      @vonwthaud289 Рік тому

      @@kouhouninaodilon9680 eh ouee