Quantifiers with Restricted Domain

Поділитися
Вставка
  • Опубліковано 13 січ 2025

КОМЕНТАРІ • 93

  • @sameerkatta8692
    @sameerkatta8692 4 роки тому +17

    Your way of teaching is fantastic,does'nt feel like boring lectures,👏👏😎

  • @sameerkhnl1
    @sameerkhnl1 4 роки тому +14

    Thank you sir. As always very clear in your explanation.

  • @supermario2076
    @supermario2076 4 роки тому +4

    Which defines why the use of -> for all x0) and why use of ^ in the case of their exixts

  • @derrissalim8885
    @derrissalim8885 4 роки тому +40

    answer:
    1.False , because when x= -2 .
    (x (x^2-1)
    became (true) -> (false) = false
    2.A.True , because when x= -2
    (x !=2) ^ (x^2=4)
    became (true) ^ (true) = true
    2.B.True , because when x=-2
    (x (x^2-2>1)
    became (true) ^ (true) = true
    Correct me if im wrong :)

    • @mdmuktadirmazumder284
      @mdmuktadirmazumder284 4 роки тому

      brother with due respect, i think 1. is TRUE , 2(a) is FALSE(as it is existensial quantifier except 2 all integer should be equal to 4 but only -2 satisfy the function) and 2(b) is also FALSE as no value less than 0 satisfy the function.

    • @aman33247
      @aman33247 4 роки тому +11

      @@mdmuktadirmazumder284 you are completely wrong

    • @259_parthpatidar9
      @259_parthpatidar9 4 роки тому

      @@mdmuktadirmazumder284 but in 2nd a and b part that sign is of "there is" which means if it is true for any single value of x in domain so it is truth value will be true.

    • @rajath6393
      @rajath6393 4 роки тому +2

      @@mdmuktadirmazumder284 you are completely wrong

    • @ayushi7853
      @ayushi7853 4 роки тому +6

      1st is true because -1 satisfy
      -1 < 0 ^ (-1)^ 2 = 1
      Means true ^ true is always true

  • @logicallytrue2271
    @logicallytrue2271 Рік тому +5

    Answers of HW:
    1. False
    2. (a) True (b) True

  • @studywithsisters3265
    @studywithsisters3265 Місяць тому

    Thankyou Sir you are really helping a lot...very awesome explanation...ek ek topic dhang se clear ho raha hai...Thankyou so much Sir 🙏

  • @raghavachekuri7270
    @raghavachekuri7270 4 роки тому +10

    Q2:a:T when x=-2
    b:T when x=-2

    • @niccolopaganini1782
      @niccolopaganini1782 11 місяців тому

      How is b true for x=-2? Wouldn't that be 0>=1

    • @bhumika5750
      @bhumika5750 10 місяців тому +1

      @@niccolopaganini1782 when x=-2,
      (-2)^2 - 2>=1
      4-2>=1
      2>=1
      hence, True.

  • @VamsiKrishna-ym3cr
    @VamsiKrishna-ym3cr 4 роки тому +8

    Waiting for the next lectures...pls upload as much as possible...

  • @mdfaisal408
    @mdfaisal408 4 роки тому +5

    Please post all videos of Discrete Math as soon as possible.

  • @anshikayadav7857
    @anshikayadav7857 4 роки тому +15

    We can use implications only with "for all" as you said in the video then why are you using it with "there exists"??
    Can anyone help me in clearing this???

  • @shanifsheikh4097
    @shanifsheikh4097 4 роки тому +10

    que 2 part (b) u said that implies in for all and AND for exist.

  • @ProssyKipssy
    @ProssyKipssy 3 місяці тому

    Even now we still visit your lectures

  • @mayankwadhwani8583
    @mayankwadhwani8583 4 роки тому +2

    Sir aap bhout achcha padate ho please please sir poora discrete mathematics upload karo

  • @vipulpandey682
    @vipulpandey682 4 роки тому +8

    Sir plz my doubt clear about it
    ¥x is ->
    and there is an = ^
    But you use -> in at least one how?
    In homework question 2. B

  • @RohitSharma-wi8ux
    @RohitSharma-wi8ux 3 роки тому +5

    Any one explained why sir wright implications in (b) second home work problem there has to be ^

  • @campergameplay5714
    @campergameplay5714 4 роки тому +19

    1)F
    2
    a-T
    b-T

  • @shobansuresh3196
    @shobansuresh3196 Рік тому +7

    But the symbol (implication) shd not be there in the question 2.b) sir

    • @MOD_Podcast_
      @MOD_Podcast_ 10 місяців тому +2

      It may at first seem that "Some x
      satisfying P(x)
      satisfies Q(x)
      '' should be translated as
      ∃x(P(x)⇒Q(x)),
      like the universal quantifier. To see why this does not work, suppose P(x)="x is an apple''
      and Q(x)="x is an orange.''
      The sentence "some apples are oranges'' is certainly false, but
      ∃x(P(x)⇒Q(x))
      is true. To see this suppose x0
      is some particular orange. Then P(x0)⇒Q(x0)
      evaluates to F⇒T
      , which is T, and the existential quantifier is satisfied.

  • @NazmulHaque-iw2zk
    @NazmulHaque-iw2zk 3 роки тому +6

    1. F
    2a. T
    2b. T

  • @kajalsingh7655
    @kajalsingh7655 5 місяців тому +1

    1--- F
    2 a---- T
    2 b ----- T

  • @dhanviakash726
    @dhanviakash726 4 роки тому +3

    Please post all videos of discrete mathematics sir...

  • @mdjanbaz6268
    @mdjanbaz6268 4 роки тому +2

    Please upload all videos of discrete mathematics

  • @suriyaprakashgopi
    @suriyaprakashgopi 3 роки тому +55

    1. False for all x less than 0 (-2^2 =1 ) 4 =1 which is false
    2.a)
    True since we have -2 in which gives -2^2 =4
    b)
    True the integers more from -3 to -inf obeys the rule

    • @KandhaMaaran-10
      @KandhaMaaran-10 2 роки тому +7

      But for 1 we can use -1 , -1 square is 1 rite.. then it becomes TRUE..

    • @Michael-hj7gn
      @Michael-hj7gn 2 роки тому +12

      @@KandhaMaaran-10 it is exist for only -1 but in question there is for all so the statement for all x is false

    • @nishitpatel874
      @nishitpatel874 Рік тому +4

      but in que(2(b)) we can't use implication in Existential Quantifier

  • @jayxcoder
    @jayxcoder 2 роки тому

    1) False
    2) a. True, b. True

  • @film_bar
    @film_bar Рік тому

    Observe 2 b there exists and for all both occurs so it is a contradiction

  • @saurabhgupta1595
    @saurabhgupta1595 4 роки тому +2

    Thanks you sir

  • @DesiHome12
    @DesiHome12 Рік тому +1

    a) true because we use x=-2
    b)true because we use x=-3

    • @RobertCudjoe-i4s
      @RobertCudjoe-i4s 11 місяців тому

      But it says not equal to two and if you use 2 you will get two but the question says not equal to two. Please explain further to me

  • @VamsiKrishna-ym3cr
    @VamsiKrishna-ym3cr 4 роки тому +7

    Separate fan base for neso academy....

    • @mian7787
      @mian7787 3 роки тому

      I need of next lecture link

  • @DoubleL_Leo
    @DoubleL_Leo 2 роки тому

    Thanks for this sir

  • @vaibhavmishra5512
    @vaibhavmishra5512 2 місяці тому +1

    Sir first ka answer false
    Second ka answer true
    Third ka answer true hoga

  • @Bebehehh
    @Bebehehh 2 місяці тому

    Notes available hai kahi ??

  • @shaileshrao3367
    @shaileshrao3367 4 роки тому +1

    1. F
    2.(a) . T
    2.(b) .T

  • @mian7787
    @mian7787 3 роки тому +2

    Sir please send the link of next lecture......i want to clear the question which you hiden the Ans in next lecture

    • @nesoacademy
      @nesoacademy  3 роки тому +3

      Discrete Maths: goo.gl/7VUE7z

  • @vinodaguguloth619
    @vinodaguguloth619 Рік тому

    Quantifier over domain for finite video send

  • @atikhasan280
    @atikhasan280 2 роки тому

    1. false
    2. true
    3. true

  • @kunaldhyani
    @kunaldhyani 2 роки тому

    1) False
    2) a - True
    b - False

  • @mian7787
    @mian7787 3 роки тому +2

    Sir next lecture link...

  • @GodfreyMukondo-zb4je
    @GodfreyMukondo-zb4je 10 місяців тому

    Answers False, True, True

  • @supermario2076
    @supermario2076 4 роки тому +1

    Sir please make the next lecture

  • @ShubhamSingh-pr4ii
    @ShubhamSingh-pr4ii 4 роки тому

    Sir network theory complete kr dijiye please 🙏

  • @bunnygamers7629
    @bunnygamers7629 4 роки тому

    Y playlist m khan h .?

  • @BoraOyunda1234
    @BoraOyunda1234 4 роки тому +1

    Where are Java lectures?

  • @vinodaguguloth619
    @vinodaguguloth619 Рік тому

    Ok thanku

  • @VamsiKrishna-ym3cr
    @VamsiKrishna-ym3cr 4 роки тому

    i think he is following kenneth h rosan discrete mathematics.....

  • @gagandeepbm2371
    @gagandeepbm2371 3 роки тому

    I dont get that last question...how?

    • @vinayak186f3
      @vinayak186f3 3 роки тому

      Solve the equation , for x less than negative root 3 there exists a solution hence true

  • @balakrishnaprasad8928
    @balakrishnaprasad8928 4 роки тому

    home work
    q1) false
    q2) i) false
    ii)true

    • @Fs99al
      @Fs99al 4 роки тому

      How did you get 2.i) as False? X=-2 is the single case to prove it as True.

  • @sarveksha2110
    @sarveksha2110 4 роки тому +1

    (false, true, true)

  • @anjuyadav2291
    @anjuyadav2291 4 роки тому +2

    Second view

  • @AlokSingh-jw8fr
    @AlokSingh-jw8fr 3 роки тому

    Homework problem
    F T T

  • @logicallytrue2271
    @logicallytrue2271 Рік тому

    Answers of HW:
    True
    False
    False

  • @cse115saraudaykiran2
    @cse115saraudaykiran2 2 роки тому

    false
    true
    true

  • @abuhurerarohani354
    @abuhurerarohani354 3 місяці тому

    false
    true
    trye

  • @vinayak186f3
    @vinayak186f3 4 роки тому

    F,T,T

  • @raghavachekuri7270
    @raghavachekuri7270 4 роки тому

    Q1:T

    • @Fs99al
      @Fs99al 4 роки тому

      False. You have to prove all values in domain with condition for universal quantifier.

  • @sanjayr2296
    @sanjayr2296 4 роки тому

    First view

  • @saurabhgupta1595
    @saurabhgupta1595 4 роки тому

    F, T, T