PREDICATE LOGIC and QUANTIFIER NEGATION - DISCRETE MATHEMATICS

Поділитися
Вставка
  • Опубліковано 13 гру 2024

КОМЕНТАРІ • 183

  • @Trevtutor
    @Trevtutor  Рік тому +3

    Check out my new course in Predicate Logic: trevtutor.com/p/master-discrete-mathematics-predicate-logic
    It comes with video lectures, text lectures, practice problems, solutions, and a practice final exam!

  • @durimmiziraj4815
    @durimmiziraj4815 5 років тому +67

    You are hands down THE best youtube tutor I have ever come across. Great job! May you find yourself rewarded in ten fold.

  • @klevisimeri607
    @klevisimeri607 2 роки тому +6

    More easy way to derive the formulas:
    For quantifiers:
    ¬∀x ∃x 1.
    Multiplying with "not" both ways (like multiplying with minus both ways): ¬¬∀x ¬∃x
    ∀x ¬∃x 2.
    For function just multiply the not:
    ¬(P(x)) ¬P(x)
    So for example:
    ∀x P(x)
    Do distribution of not:
    ¬(∀x P(x))
    Like multiplying (with not in out case):
    ¬∀x ¬P(x)
    Using 1. :
    ∃x ¬P(x)

  • @meghnabisht571
    @meghnabisht571 4 роки тому +30

    this topic can"t be so easy without this explanation..

  • @thragg00
    @thragg00 6 років тому +118

    A1 handwriting dude

  • @rogersmith258
    @rogersmith258 2 роки тому +4

    You are a godsend! My professor only left us with incomplete slides and a textbook that doesn't go into depth on the topic.

  • @imaginecloudsxo7987
    @imaginecloudsxo7987 2 роки тому +14

    You are honestly an explanation god!! I found your videos a few months ago and they literally saved me. You explained Predicate Logic soo well and easily. I appreciate it a lot. The fact that I get so excited when I know that you have already covered a topic that we cover at Uni and that I get to see your videos on that specific topic is crazy haha.

  • @maryammehboob8285
    @maryammehboob8285 7 років тому +20

    Thank you man .Now I understand the concept of propositional logic,predicate logic and quantifiers.GOD bless you.

  • @jasonr5248
    @jasonr5248 6 років тому +82

    Nice videos man, you do a fine job teaching discrete math.

  • @jorgemath6070
    @jorgemath6070 2 роки тому +3

    I'm a latin young and is amazing your explaning form, currently don't speak english very well, but i can understand you clearly, just this trimester i'm taking discrete mathematics! I'm studying BS in Mathematics

  • @shubhamsrivastava337
    @shubhamsrivastava337 7 років тому +163

    man u made the damn thing pretty easy. thanx man :)

  • @jackmenirons4989
    @jackmenirons4989 3 роки тому +2

    Stumbling across my fifth Discrete Math course and finally someone cares enough to actually explain the backwards E. There are way too many bad Discrete Math courses out there. This is a godsend.

  • @kooner3
    @kooner3 3 роки тому +3

    im gonna shove that negation through like it aint nobodies business. Thanks for the tutoring T.

  • @craiggray7110
    @craiggray7110 7 місяців тому +1

    Wish I could up vote this video unlimited times - you are a boss at explaining everything

  • @okidave
    @okidave 6 років тому +21

    Boom, I finally get it after this video versus reading the text and university provided references.

  • @rasmusdeneergaard5114
    @rasmusdeneergaard5114 5 років тому +3

    Dude you are saving my sanity with these videos, thank you so much!

  • @mater5930
    @mater5930 2 роки тому +1

    I used to struggle with negation until I heard "Not all dogs are brown". I used that same example for every other negation, now it's all intuitive. Thanks a lot, man.

  • @thomasmorin2496
    @thomasmorin2496 7 років тому +49

    It all makes sense now

  • @courageandpeace1944
    @courageandpeace1944 6 років тому +5

    that was a great tutorial
    you made this so easy for me
    with love from INDIA 🇮🇳

  • @saulhlupo8427
    @saulhlupo8427 3 роки тому +6

    These videos are really helpful, thank you very much for coming up with such great ideas

  • @abdurrahmandemiri1766
    @abdurrahmandemiri1766 5 років тому +1

    How is that possible :
    Consider:A is the universal quantifier and E is the existential quantifier and this notation as prime(*)
    Negation of AxP(x) is *Ex*P(x).
    On the other hand, when it comes to the question in the 13:25
    Consider R(x,y) is the propositons in the brackets.
    So shouldn't be the negation of Ax[EyR(x,y)] ==> *Ex*Ay*R(x,y) corresponding to the rule above.
    Because we can consider P(x) as EyR(x,y) so that will be *Ex*[EyR(x,y)] and if we continue in the same way we get *Ex*Ax*R(x,y).

    • @Peanutzard
      @Peanutzard 5 років тому

      The negation of AxP(x) is Ex*P(x), what you stated was a logical equivalence.

  • @DonaldStephen07
    @DonaldStephen07 5 років тому +1

    I am teaching this subject this semester and your video helped me to better explain the topic. Thanks!

  • @serik3818
    @serik3818 5 років тому

    I want to say that you are the best teacher on Earth, thanks to you I can pass this exam )

  • @Thech0sen.1s
    @Thech0sen.1s 4 роки тому +1

    If you want to get a good grade for the year, listen to this guys steps, he Actually breaks it down step by step,

  • @shirazlittlebunny4529
    @shirazlittlebunny4529 9 місяців тому +1

    Love your explanations, always clear. Also just loves listening to you, nice voice and nice handwriting. Thank you for your content 🫶🏻

  • @nikletagoneva9905
    @nikletagoneva9905 5 років тому

    All of these videos for logic are awesome! Very helpful and well explained! THANK YOU!!!

  • @tomnguyen8520
    @tomnguyen8520 3 роки тому

    What a great video! what you are doing is helping me so much !
    I have to study online without having online lecture or explanation and only having scripts of the lecture after the course.

  • @Rayalot72
    @Rayalot72 5 років тому +1

    If anyone was wondering about 12:22, -I believe that's "not possibly P" being equivalent to "necessarily not P."- I could have it mixed up though, in which case it's "not necessarily P" being equivalent to "possibly not P."
    EDIT: I mixed it up...

  • @ramrodriguez2068
    @ramrodriguez2068 4 роки тому +1

    Man thank you, we have a fresh grad mechanical engineer as a professor for this subject with no teaching experience. The exams have been hell. Much appreciated man~

  • @lancelofjohn6995
    @lancelofjohn6995 2 роки тому

    Cool method to understand the meaning of negation of first order predicate logic.

  • @alfahad7704
    @alfahad7704 3 роки тому +1

    Such a nice and clear video. Learned a lot.

  • @morgard211
    @morgard211 6 років тому +2

    10:21 Correct me if I'm wrong.
    All dogs are brown. There is not a dog which is not brown.
    There is a dog which is brown. Not all dogs are not brown / of different colour than brown.
    Not all dogs brown. There is a dog which is not brown.
    There is not a dog which is brown. All dogs are not brown / of different colour than brown.

  • @joshakads5307
    @joshakads5307 3 роки тому +1

    Good job. It's gonna been great for me to learn more about your study

  • @dairoleslieann9921
    @dairoleslieann9921 2 роки тому

    YOU ARE GOOD IN TEACHING THIS IS SO HELPFUL !

  • @jennysanchez822
    @jennysanchez822 4 роки тому +1

    Thank you for sharing this knowledge! It was very helpful!

  • @codingwombat
    @codingwombat 5 років тому +2

    Negation part is at 6:20

  • @dtirey
    @dtirey 6 років тому +8

    Very helpful, but have one question. On the last problem, why didn't the quantifiers flipped and negated like the four practice problems before? Thanks

  • @rickkar6789
    @rickkar6789 2 місяці тому

    Thank you, from the bottom of my heart.

  • @janjanhernaez1004
    @janjanhernaez1004 4 роки тому +1

    Dude you deserve more subs and likes.

  • @santoshupretimadara
    @santoshupretimadara 4 роки тому

    thanks ur videos help a lot in this dire situation..it helped me understand many things that i couldn't do from online class

  • @zabiiaryan8325
    @zabiiaryan8325 2 роки тому

    Can you tell us why our professor is not doing the same? Appreciate it you are a life saver.

  • @clee375
    @clee375 3 роки тому

    You are a great teacher! Thank you so much for creating the videos!

  • @MsYoyojam
    @MsYoyojam 7 років тому +2

    This helped so much. I can't thank you enough!!

  • @monikabindal9544
    @monikabindal9544 6 років тому +6

    very nice explanation..

  • @Dan-gc3ke
    @Dan-gc3ke 6 років тому +3

    I'm super confused, why don't you do the + and - for 14:40? Shouldn't it be -Ex - Ay - P(x)? Or is the equivalence different then negating

    • @Trevtutor
      @Trevtutor  6 років тому +4

      Negation is negation. Equivalence is equivalence.
      Equivalence is like saying p ~~p, which is what the +/- example was.
      Negation is negation. Not claiming that p ~p.

  • @panic9725
    @panic9725 4 роки тому +2

    great vid. nice job man

  • @yash7891
    @yash7891 5 років тому +15

    You sound like James from Casually Explained

  • @lancelofjohn6995
    @lancelofjohn6995 2 роки тому

    At the time of 12:05 in this video, whether do you want to say ~((Exist) X p(X))?Should be the result (All) X ~P(X)?

  • @sahilpatel0701
    @sahilpatel0701 9 місяців тому

    Thank you for saving my life!

  • @Agreedtodisagree
    @Agreedtodisagree 4 роки тому

    I truly appreciate this.

  • @loedinero7710
    @loedinero7710 4 роки тому

    Your videos have helped so much!

  • @keynnerblas5732
    @keynnerblas5732 4 роки тому +1

    thank you again sir, you are brilliant!

  • @lahaag3310
    @lahaag3310 Рік тому

    Thank you. My textbook is absolutely hopeless at explaining this stuff.

  • @ahnafahmed6853
    @ahnafahmed6853 6 років тому +5

    Thank you so much for making these videos. You make my life easier :D

  • @phoehtaung
    @phoehtaung 7 років тому

    Thank you man!! Keep up the good work you are educating so many people =)

  • @1010ansh
    @1010ansh 7 років тому +1

    Very nice explanation

  • @balasatyanarayana741
    @balasatyanarayana741 3 роки тому

    That's crazyy, great lecture mann!

  • @estie4930
    @estie4930 4 роки тому

    Thank you so much. God bless you.

  • @ryanbeatbox
    @ryanbeatbox 6 років тому +1

    You are amazing, thank you for such a great lesson

  • @etomraymundp.12stem1a8
    @etomraymundp.12stem1a8 8 місяців тому

    Great help, thanks!

  • @ashraflone6586
    @ashraflone6586 6 років тому

    Wow you really nailed it.... thanks

  • @thornephillips9071
    @thornephillips9071 3 роки тому

    i hope you know that you are an amazing human

  • @aqmaral6454
    @aqmaral6454 7 років тому

    this video helped me so much, thank you !

  • @feyylen
    @feyylen 3 роки тому

    Thank you so much this is very helpful

  • @harjotgill667
    @harjotgill667 3 роки тому

    it is really helped me. thanks a ton

  • @dayo_the_keyboardist
    @dayo_the_keyboardist 5 років тому

    This was an excellent video. No cap

  • @madspetersen6537
    @madspetersen6537 4 роки тому

    That was so awesome! thanks

  • @turboleggy
    @turboleggy 6 років тому

    It's really good just wish there were harder examples like in 'how to prove it'

  • @bossbabyy_00
    @bossbabyy_00 18 днів тому

    Thank you!

  • @criticalsting
    @criticalsting Рік тому +6

    Not all heroes wear capes

  • @hajiro.7984
    @hajiro.7984 4 роки тому

    thank u so much ur videos really helped me a lot

  • @almoh
    @almoh 4 роки тому

    Hi There, What tools (board, pen and tablet) are you using for the presentation?

  • @ozzyfromspace
    @ozzyfromspace 6 років тому

    Loving this series! Just a minor error: at 4:20 m must belong to the set of complex numbers or your statement becomes a contradiction. For example, if n = -1, m = sqrt(-1) satisfies the equation m^2 = n. As shown, n is a real number while m is a complex number. Again, this is a super minor error, but overall I'm really appreciating your lectures! Kudos to you, TheTrevTutor :)

    • @ozzyfromspace
      @ozzyfromspace 6 років тому

      Counter-example about sqrt(xy).... let x=1/2, y=1/3 .... sqrt(1/2*1/3)=1/[sqrt(2)*sqrt(3)] i.e. the output cannot be represented in the form a/b where a and b are integers, and thus is not a rational number. Only certain rational {x,y} pairs generate rational sqrt(xy) values. Sorry for being a downer, I swear I love your videos!

  • @thatquietkid9005
    @thatquietkid9005 Місяць тому

    can anyone explain 5:17, i've watched that part over and over but i dont understand it at all.

  • @NPTeddy-ge3nb
    @NPTeddy-ge3nb 3 роки тому

    very well done

  • @ameurrs
    @ameurrs 6 років тому

    In a situation where you would have a double negation through the simplification of a problem similar to the last one you've done, does that double negation law applies to quantifiers/predicates as well or is that to be treated some other way? Thank you!

  • @joychen1285
    @joychen1285 6 років тому +8

    I lost 10 points on the test for this question, I should watch carefully!

    • @vic6466
      @vic6466 5 років тому

      Damn i have my exam on Wednesday 😭

  • @krunalkamleshkumar8127
    @krunalkamleshkumar8127 5 років тому

    the last negation you did I don't get it. I don't get it how u got -A. I thought we use the trick you showed us so if I follow the trick it show give me -E for A but for A u got -A. that part I cannot understand. This step is shown around (13:24) min. If anyone of u guys understood the last part then I will appreciate if u help me. thx

  • @shashanksharma1074
    @shashanksharma1074 3 роки тому

    Thank you man.

  • @kinioffiji540
    @kinioffiji540 7 років тому +1

    awesome...now i understand

  • @bobbysokhi7296
    @bobbysokhi7296 5 років тому

    Thank you so much !

  • @sundance4105
    @sundance4105 Рік тому

    I really thank for good leason

  • @ParthDakoria
    @ParthDakoria 7 років тому

    Nicely done

  • @kyraflame
    @kyraflame 6 років тому

    Why at 8:15 do the and symbols change to or symbols when negated?

  • @domi5823
    @domi5823 5 років тому +1

    Question for "given two rationals x and y, sqrt(xy) will also be rational."
    apart from your abbreviation, could this also be expressed as (∀x,y∈Q) => (sqrt(xy) ∈ Q)

    • @smackdashitoutchu7755
      @smackdashitoutchu7755 4 роки тому +1

      I have the same question. My guess is yes. "If any two numbers x,y are rational, then sqrt(x,y) is also rational."
      Sounds like an If, then statement to me.

  • @jasur.tech101
    @jasur.tech101 5 років тому

    Great video

  • @stephenasmith6625
    @stephenasmith6625 6 років тому

    test on thursday, thank you.

    • @jmaham23
      @jmaham23 6 років тому +2

      Fsu discrete gang

  • @bluegiant13
    @bluegiant13 6 років тому

    You're a godsend.

  • @calebnetsanet1844
    @calebnetsanet1844 3 роки тому

    you are the best tnx soooo much

  • @guojiayu9738
    @guojiayu9738 6 років тому

    thats clear and useful!

  • @thenetworkguru3485
    @thenetworkguru3485 2 роки тому

    could you please create more videos for theoretical computer science

  • @bestest43
    @bestest43 5 років тому

    So if I try to put in a sentence what you did at the end of the video after doing the negation, can I say it as 'is there an x for all y such that not P( x, y ) or not Q( y )

  • @tunamusic2314
    @tunamusic2314 4 роки тому

    what application are you using to write down ?

  • @mohammedashif1172
    @mohammedashif1172 6 років тому

    Good explanation :)

  • @MeryemIdtaleb
    @MeryemIdtaleb 6 років тому

    very useful thanks

  • @AKHILDS-j3v
    @AKHILDS-j3v 7 років тому

    good teaching

  • @thisisthefoxe
    @thisisthefoxe 7 років тому

    you got it wrong at 5:32!
    there is no comma symbol ever defined. Instead it should read: For All x in Q AND for All y in Q.....

    • @Trevtutor
      @Trevtutor  7 років тому +1

      Well, pedantically we should not have "and" between quantifiers and just say "for all x in Q, for all y in Q". We could surely define a comma pretty intuitively if we wanted to.

    • @thisisthefoxe
      @thisisthefoxe 7 років тому +2

      TheTrevTutor yaa you’re right, practically speaking u'll most likely do it that way.... but i'm just in my first semester in IT study ah i just HAD to say it :D i just love logicc ^^
      also thx for the fast answer ^^
      have a nice day :)

  • @ausreir
    @ausreir 5 років тому

    Thank you!!!

  • @4everfatjoe
    @4everfatjoe 6 років тому

    Great stuff

  • @ubermensch5472
    @ubermensch5472 5 років тому +1

    5:02 uh oh We got a mistake over there :)