Evaluating the definite integral using differentiation under integration sign & Beta/Gamma functions

Поділитися
Вставка
  • Опубліковано 15 гру 2024

КОМЕНТАРІ • 5

  • @holyshit922
    @holyshit922 21 годину тому

    We can calculate it with substitutions
    Substitution u = sin^2(x) will give us
    1/4\int_{0}^{1}\frac{ln{u}}{\sqrt{1-u^2}}du
    then substitution u = sin(t)
    gives us integral 1/4\int_{0}^{\frac{\pi}{2}}\ln{sin{u}}du

    • @cipherunity
      @cipherunity  20 годин тому

      That is beautiful and much simpler.

  • @raghvendrasingh1289
    @raghvendrasingh1289 18 годин тому

    👍
    I = - (1/2) ln (cosec x)^2/√{1+(cosec x)^2 }
    let (cosec x)^2 = cosec t
    d x = cot t dt/2√ {(cosec t - 1) }
    I = - (1/4) integral of ln cosec t in [0,π/2]
    I = - (π/8) ln 2

    • @holyshit922
      @holyshit922 17 годин тому

      This approach is slightly different then mine but essentially the same

    • @cipherunity
      @cipherunity  17 годин тому

      done