integral of sqrt of tanx

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ • 93

  • @Moj94
    @Moj94 Рік тому +89

    This is one of those integrals that looks "simple enough" when you're taking an exam.

  • @NWSCS
    @NWSCS 2 місяці тому +1

    This is one of those integrals that just gets way out into the weeds. Multiple substitutions, hyperbolic trig functions. Very challenging. Great job explaining the steps. Especially the ones where someone can easily get lost on.

  • @paulstjean8598
    @paulstjean8598 5 місяців тому +5

    I do enjoy your patience and step by step breakdown. Too bad I'm retired and no longer have students to share this with.
    Keep it going.

  • @josephparrish7625
    @josephparrish7625 Рік тому +36

    I love this problem. And, of course, I’ve seen it before. How would a student who has never seen it know what the first move would be? I used to tell my students, “now that you’ve seen me do it, remember the first move!” My students would ask, “how did you know how to do it?” and I would answer, “I saw my professor do it in college!” Lol
    Anyways, I love your very clear and detailed explanation of a great problem. As always, you amaze with your teaching skills!

    • @savitrinamdeo-zr5jo
      @savitrinamdeo-zr5jo Рік тому +1

      Very nice way of explanation nice n clear voice

    • @bravo2992
      @bravo2992 Рік тому +1

      I think our plan was to get rid of root

    • @Gaurav_C_Kher
      @Gaurav_C_Kher Рік тому +1

      ​@@bravo2992getting to 2t²/(t⁴+1) is natural enough, but the steps after that just seem too complicated for any student to do in the first time imo

    • @ThembaNzama-q7c
      @ThembaNzama-q7c 11 місяців тому

      That's great !!!

    • @sivasakthisaravanan4850
      @sivasakthisaravanan4850 9 місяців тому +1

      There are people who can do it when they see it for the first time, without being taught!
      But these days as we have Wolfram Alpha, we don't have to manually do any integration😊

  • @jayniesgottagun
    @jayniesgottagun Рік тому +25

    My God, you're smart and have a gift for teaching. I plan to absorb all you have to give.

  • @rhm5158
    @rhm5158 11 місяців тому +4

    I used to do this stuff over40 years ago and it’s amazing to me how much I don’t remember. You just blew my mind.

  • @Jop_pop
    @Jop_pop Рік тому +15

    I've never dived this deep into integrals before and this is probably the most complicated integral ive seen explained so succinctly

    • @syed3344
      @syed3344 10 місяців тому +1

      I did it like this:
      I=int(sqrt(tanx))
      Now cosider a new integral J
      J=int(sqrt(cotx))
      I+J=Int.(sqrt(cotx) + sqrt(tanx))
      I+J=sqrt(2)*Int.( (sinx+cosx)/sqrt(sin2x))
      we know that sin2x = 1-(sinx-cosx)²
      I+J=sqrt(2)*Int.( (sinx+cosx)/sqrt((1-(sinx-cosx)²)
      Now substitute sinx+cosx=t
      (cosx+sinx)dx=dt
      I+J=sqrt(2)*int.( dt/(sqrt(1-t²))
      I+J=sqrt(2)*sin-¹(sinx+cosx)+c1
      NOW
      I-J=Int.(sqrt(cotx) - sqrt(tanx))
      I-J=sqrt(2)*Int.( (sinx-cosx)/sqrt(sin2x))
      we know that sin2x = (sinx+cosx)²-1
      I-J=sqrt(2)*Int.( (sinx-cosx)/sqrt(((sinx+cosx)²-1)
      Now sinx+cosx=t
      (cosx-sinx)dx=dt
      (sinx-cosx)dx=-dt
      I-J=sqrt(2)*int(-dt/sqrt(t²-1))
      J-I=sqrt(2)*int(dt/sqrt(t²-1))
      J-I=sqrt(2)*ln|x+sqrt(x²-1)|+ c2
      J+I=sqrt(2)*sin-¹(sinx+cosx)+c1
      Subtract them -2I=
      sqrt(2)*[lnx+sqrt(x²-1)-sin-¹(sinx+cosx))+c3

    • @a.anithapreethysiva1542
      @a.anithapreethysiva1542 3 місяці тому

      ​@@syed3344damn

  • @jesusandrade1378
    @jesusandrade1378 10 місяців тому +4

    That form of the final solution is the most simplified and symmetric form, because you can also express the inverse hyperbolic tangent as a logarithm, and yet another form if you use partial fractions after 2t^2/(t^4+1)

  • @paulinofm
    @paulinofm 9 місяців тому

    Maravillosa integral y maravillosa solución. Thanks from Spain. !!!!!

  • @cesarmiranda2205
    @cesarmiranda2205 11 місяців тому +2

    Outstanding explanation, you are the guy, I really enjoyed, best regards from Brazil.

  • @murdock5537
    @murdock5537 11 місяців тому +4

    This is amazing. Many thanks for this awesome "journey".

  • @Viewpoint314
    @Viewpoint314 9 місяців тому +1

    Nice clear writing for this interesting integral.

  • @NamregSelaur-up4or
    @NamregSelaur-up4or 11 місяців тому +2

    I solved that integral with two maths skills.
    1. Using substitucion.
    2. Completing the perfect trinomial.

  • @trivikram4962
    @trivikram4962 4 місяці тому

    i can finally binge ur videos, as i have just started integration. thanks

  • @bittuKumar-sw3ux
    @bittuKumar-sw3ux Місяць тому

    From India absolutely amazing sir

  • @arungosavi5698
    @arungosavi5698 11 місяців тому +2

    Mind boggling ,sir

  • @FedericoNassetti
    @FedericoNassetti 6 місяців тому +1

    Keep going your videos are the highlight of my day❤

  • @VishwanathMN-m5i
    @VishwanathMN-m5i Рік тому +2

    Sir you are a genius at mathematics thank you

  • @AshokKumar-ul6dg
    @AshokKumar-ul6dg 3 місяці тому

    Thanks - you always make it so simple and intuitive.
    ...A hallmark of a genius-teacher. 🎉❤
    A small observation.
    The first term has + sign and the second term has -.
    ( I is inv tan exp and the second is hyp as derived.
    In the last step, by oversight you have inverted u and v.
    ( Happens to me always over the board😢)...

  • @saarike
    @saarike 8 місяців тому

    Huh, what an integral. Thanks for sharing. Never stop learning or you not living 👍👌👍I have to watch this many times...

  • @Hiram_-tg5wr
    @Hiram_-tg5wr Місяць тому +2

    great solution and also a fan of the handwriting. But can we get answer in the form of natural log instead of inverse hyperbolic tangent. We could use the natural log substitution in form of 1/(x^2-a^2).

  • @servictorovich2576
    @servictorovich2576 Рік тому +3

    однозначно, красивое решение. Достойно похвалы

  • @michalkorczyk4189
    @michalkorczyk4189 8 місяців тому +1

    if this video is too long or slow for you, press F12 and type "document.querySelector(".video-stream").playbackRate = 3;" to konsol

  • @omxky
    @omxky 3 місяці тому

    Love your dedication BRO keep samshin integrals

  • @stinkybohoon71
    @stinkybohoon71 8 місяців тому

    Excellent Teacher, congrats

  • @عابرون-ن7ذ
    @عابرون-ن7ذ Рік тому +2

    Good math go head for more thank you man 👍👍👍

  • @nitishjha8259
    @nitishjha8259 3 місяці тому

    Different level of problem. Very nice..

  • @rob876
    @rob876 Рік тому +1

    You made a difficult integral look easy.

  • @TopRankX
    @TopRankX Рік тому +2

    Keep going man!
    Love what you do ❤

  • @lukaskamin755
    @lukaskamin755 11 місяців тому

    Wow, that was intense, kinda a detective story to find the suspect (the integral) LOL

  • @oscarfranciscosantanafranc8948
    @oscarfranciscosantanafranc8948 10 місяців тому +1

    You are very smart. God bless you!

  • @maxborn7400
    @maxborn7400 Рік тому +2

    I remember once in school, one of us wanted to troll the teacher, so we asked, "what is the integral of e^(tan(x))". While it was a joke, I have sometimes wondered about it. Integral of e^(sin(x)) is a Bessel function of order 0. Integral of e^(tan(x)) shows some interesting, convergent properties. But I never get around to formalising it, only numerically studying it. Would be interesting if we could some day find an analytical expression for that, or just a "special functions" recursive series (I think I have that somewhere).

  • @ethanbartiromo2888
    @ethanbartiromo2888 9 місяців тому +2

    I actually watch all of your videos in 2x speed lol

  • @jesusmartinez9662
    @jesusmartinez9662 Рік тому +1

    your videos are the best!

  • @tamilchelvanramasamy8733
    @tamilchelvanramasamy8733 10 місяців тому

    Great Sir

  • @wasagamer001
    @wasagamer001 Рік тому +2

    Thanks for the video sir !

  • @madsniper5927
    @madsniper5927 Рік тому +1

    And that was perfect
    Thank you for the lesson

  • @joelmacinnes2391
    @joelmacinnes2391 8 місяців тому

    I knew that the integral of 1/x^2+a = 1/sqrt(a) .arctan(x/sqrt(a)) + c but not why that was the case, thanks for the video!

  • @Necrozene
    @Necrozene 7 місяців тому

    I love your stuff man! Love maths. Maths is my "God Zero"!

  • @AngelZangata
    @AngelZangata 8 місяців тому

    You are my favorite ❤❤❤❤ bro

  • @WazifatutTiyebah
    @WazifatutTiyebah 3 місяці тому

    Thank you soooooo much!
    I was helped a lot by this!

  • @martys9972
    @martys9972 Рік тому +2

    Great derivation, but when tanh instantly turns into tan for v/sqrt(2), at 23:48, you really should have mentioned that correction or edited over it.

    • @PrimeNewtons
      @PrimeNewtons  Рік тому

      I'll have to watch it again to see what you're referring to. Thanks for the feedback.

  • @amolgameryt7159
    @amolgameryt7159 Рік тому +2

    I had solved this question recently it kinda esy
    If you are preparing for competitive examinations

  • @jesusandrade1378
    @jesusandrade1378 10 місяців тому

    Some integrals require more than 2 or 3 consecutive substitutions or methods to get a solution, and there may be equivalent solutions.

  • @devonwilson5776
    @devonwilson5776 10 місяців тому

    Greetings. Thanks for sharing.

  • @noid3571
    @noid3571 Рік тому +1

    I had this setup on my exam and I was stuck, I just couldn't figure out what to do and wasted so much time.
    So after the exam I put this problem into symbolab, since nobody got the answer, and I couldn't beleve the result
    Thanks for the video : )

  • @kawenjanathan6538
    @kawenjanathan6538 7 місяців тому

    Thank you for the save ❤

  • @AvrajitGRoy
    @AvrajitGRoy Рік тому +1

    Amazing man!

  • @moorecable
    @moorecable 9 місяців тому

    Learned a lot. But why not let u be cos(X) . Then it's sqrt-(lncos(x)) . You can get ride of the negative as cos(-x) is also cos(x).

    • @PrimeNewtons
      @PrimeNewtons  9 місяців тому

      If I knew it was a better option, I would have used it.

  • @abhishekpathak4973
    @abhishekpathak4973 Рік тому +1

    That was wonderful ❤

  • @Harbingersknight21
    @Harbingersknight21 Рік тому

    Thanks this problem was in my text book

  • @piyushhh.54
    @piyushhh.54 Рік тому

    Actually this is a very famous question in our board(exam conducts) education system

  • @haithamsuneer2182
    @haithamsuneer2182 11 місяців тому

    Hey sir i hope ur doing well can i ask a doubt after we get the integral as ∫2dt/(t²+1/t²) cant we factor the deno as {(a²+b²) = (a+b)² -(2ab)}
    SO WE GET
    2∫dt/(t+ 1/t)² - √ 2²
    then just apply the formula so the final answer in terms of t will be
    1/√2 {ln [(t+ 1/t)+ √2] / [(t+ 1/t) - √2]} + c

  • @lebesguegilmar1
    @lebesguegilmar1 Рік тому

    The maestro. Very inteligent your tecnic of solution. The same strategy of solution if the int \sqrt{\cot x}dx? And too \int \sqrt{\sec x}dx? The variable \phy and \theta not same? Here in the Brazil congratulation teacher

  • @herbertsusmann986
    @herbertsusmann986 7 місяців тому

    This is why they came out with books of tables of integrals! People doing real work want to look it up in a book and not try to derive it from first principles and probably get a sign wrong or something!

  • @vashu471
    @vashu471 Рік тому +3

    I solved this question yesterday in my school in one try ✌️

    • @Occ881
      @Occ881 10 місяців тому

      Do you study in college or highschool...you might be genius

  • @nibirhasan4142
    @nibirhasan4142 Рік тому

    how can we write root 2 φ as the result of that integration?
    as tanh^2 x+ sech^2x=1

  • @emmanuelseiman2725
    @emmanuelseiman2725 Рік тому +1

    Cool but sqrt(tanx) +1/sqrt(tanx) is always >1 (ex: 1.46 for π/6) so you have to use coth−1 instead of tanh−1.
    It is always necessary to pay attention to the domain of definition of hyperbolic trigo. functions
    tanh−1 ∈ (-1;1) and coth−1 ∈ (-∞;-1)∪(1;∞)

  • @roddos
    @roddos 10 місяців тому

    Piękny wywód.

  • @JotaMartinez-c1q
    @JotaMartinez-c1q Рік тому +2

    Thanks, integral sqrt sen x

  • @bibliophilesayan320
    @bibliophilesayan320 Рік тому +2

    Sir can't we use The method of by parts to solve this problem??

  • @vadimtokman123
    @vadimtokman123 10 місяців тому

    Could you differentiate to prove there is no errors? BTW, great job!!!!

  • @lindsaywaterman2010
    @lindsaywaterman2010 10 місяців тому

    Brilliant!

  • @Shashi_227
    @Shashi_227 Рік тому +1

    Your 📸 are most recommended

  • @martyknight
    @martyknight 3 місяці тому

    Wow

  • @omaraladib2165
    @omaraladib2165 Рік тому

    حلوة ولكن الطريقة طويلة

  • @paulmatthewduffy
    @paulmatthewduffy Рік тому +2

    WOW!

  • @Bertin-q3y
    @Bertin-q3y Рік тому

    ((tanx)^2)/ 2(tanx)^0,5

  • @antoniopena1183
    @antoniopena1183 3 місяці тому

    Damn

  • @gideonkudgorgi226
    @gideonkudgorgi226 11 місяців тому

    O Bruv, why is the answer more complicated than the question itself 😅😅😅😅

    • @jesusandrade1378
      @jesusandrade1378 10 місяців тому +1

      Because the integral is more complicated than the derivative (the integrand).
      That is why integration is more difficult than differentiation.
      Differentiation is just mechanical/algebraic manipulation and simplification, and integration is an art.
      And many elementary expressions, functions, or integrands don't have elementary integrals/antiderivatives

  • @Bertin-q3y
    @Bertin-q3y 10 місяців тому

    -ln(sinX)^0,5

  • @Vikram-xc3pb
    @Vikram-xc3pb 10 місяців тому

    Just another ordinary problem for Jee advance aspirants😂😂

  • @ache6407
    @ache6407 Рік тому +2

    What do you do for a living? Are you a teacher? You’d make a good one