Las Cortaduras de Dedekind

Поділитися
Вставка
  • Опубліковано 14 гру 2024

КОМЕНТАРІ • 115

  • @MathRocks
    @MathRocks 3 роки тому +70

    Mucha suerte con este video como siempre destilando calidad y ustedes son de los míos en el curso que hice de Análisis Real por supuesto construyo R con cortaduras de Dedekind 😎

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому +10

      ¡Muchas gracias John! El tratamiento que más he visto en textos es puramente axiomático, pero precisamente comprobar que existe un conjunto que satisface dichos axiomas es dar la definición constructiva

    • @jonathanescobarcifuentes5602
      @jonathanescobarcifuentes5602 3 роки тому

      Todavía me acuerdo el par de vídeos de las cortaduras de Dedekind que hiciste para mí investigación.
      Excelente vídeo @Archimedes Tube

    • @martinperu6207
      @martinperu6207 3 роки тому

      Bien por las mates.. Ambos en búsqueda de la difusión de ella. A compartir sus conocimientos a tope.

    • @AULASPARTICULARESNOVAS
      @AULASPARTICULARESNOVAS 2 роки тому

      Hay algo más... A parte de las demostraciones de Dedekind???? Algunos aportes más para que los estudié 🤔✨📚🧠✨

  • @nraul98
    @nraul98 3 роки тому +31

    Genial!
    La teoría de conjuntos es mi rama favorita de las matemáticas, me encanta como se generaliza de un conjunto a todas la estructuras algebraicas.
    Felicidades que buen video. 👌👌

  • @davidgutierrezrubio9418
    @davidgutierrezrubio9418 3 роки тому +8

    Magnífico vídeo. La necesidad de formalizar conceptos tan básicos como los números reales y su perspectiva histórica es un tema precioso, y lo habéis representado de una manera muy amena.

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому +4

      ¡Muchas gracias David!
      La verdad es que me ha costado encontrar buenas fuentes pues el tratamiento de la definición formal de los números reales es muy dispar según la referencia que se utilice. Creo que la forma más frecuente de abordar los números reales es de forma axiomática considerando, por ejemplo, el principio del supremo como axioma pero no acababa de convencerme este tratamiento. Me parece más natural construir los reales a partir de los racionales ya sea con clases de equivalencia de sucesiones de Cauchy o cortaduras de Dedekind de modo que los axiomas se demuestran. La semana próxima publicaremos la continuación explicando el principio del supremo y demostrándolo utilizando las cortaduras de Dedekind.
      ¡Un abrazo!

  • @josemanueljordanbalcazar7081
    @josemanueljordanbalcazar7081 3 роки тому +5

    Exposición de gran factura.
    Muy didáctica y pulcra como todas las anteriores.
    Mil gracias.

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому

      ¡Muchas gracias! Para la semana próxima queremos tener listo el vídeo sobre el Principio del Supremo. Saludos

  • @roquebello1816
    @roquebello1816 3 роки тому +4

    Simplemente genial, extraordinario!!! Con sus particiones Dedekind logro lo que ni Cauchy, ni Gauss, ni Bernoulli, ni Euler habían logrado, completar la recta.

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому +1

      Sin duda Dedekind merece más reconocimiento del que tiene.

  • @JoseCastro-gk2kw
    @JoseCastro-gk2kw 3 роки тому +3

    Es bastante abstracto.
    Se puede entender, pero hay que manejar hasta teoría de conjuntos.
    Muy bueno.

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому +8

      Hola Jose,
      Es un tema bastante difícil de tratar. No en vano, la formalización de los números reales tuvo que esperar aprox. dos mil años desde que los pitagóricos abandonaran la idea de número por el descubrimiento de magnitudes inconmensurables.
      Buscando referencias he encontrado bastante disparidad de métodos en la definición de los reales. La mayoría de textos opta por un tratamiento axiomático pero ciertamente uno debe probar que un conjunto cumpliendo dichos axiomas existe (no tiene mucho sentido hacer matemáticas sobre el conjunto vacío) y esto es precisamente la construcción de los números reales a partir de los racionales. También optamos por las cortaduras de Dedekind en vez de completar Q con clases de equivalencia de sucesiones de Cauchy por ser Dedekind el primero históricamente en formalizar los reales.
      ¡Un saludo!

  • @TallyNumbers
    @TallyNumbers 3 роки тому +3

    ¡Cracks! Gran vídeo para ilustrar las cortaduras de Dedekind 👏

  • @fernandogeijo2769
    @fernandogeijo2769 3 роки тому +3

    Un comentario de un profano aficionado. En su momento, me enseñaron la construcción de R a partir de la sucesiones de Cauchy en Q, Había oído de las cortaduras de DedeKind; pero no había tenido un conocimiento formalizado de las mismas hasta ahora. Comparándolas con las sucesiones de Cauchy en Q, me han surgido una serie de similitudes (que viniendo de un profano, pueden ser una tontería):
    1.- Ambas son subconjuntos infinitos de Q y por tanto numerables.
    2.- Ambos son ordenados
    3,. Ambos son acotados
    Estas reflexiones me han llevado a pensar que en realidad ambas construcciones tratan a cada numero real como el resultado de aproximaciones sucesivas de números racionales. Es un pensamiento en voz alta puramente intuitivo, no sé si no es una barbaridad.

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому +1

      Hola Fernando,
      Yo creo que el comentario es muy acertado. Ya sea con cortaduras de Dedekind (como haremos en esta serie) o con sucesiones de Cauchy, podemos demostrar el Teorema de los intervalos encajados y utilizarlo por ejemplo para ver que raíz de 2 es realmente un número real. Es decir, existe un número real x tal que x^2 = 2.
      En nuestro próximo vídeo veremos el principio del supremo y en un par de semanas probaremos el Teorema de los Intervalos encajados.
      Saludos

    • @fernandogeijo2769
      @fernandogeijo2769 3 роки тому

      @@ArchimedesTube Gracias por el comentario. Me hace sentir que no me he oxidado con los años. Tengo una cuestión (totalmente off-topic, pero no sé como dirigirme a ti de otra manera que este foro) que me está dando vuelta en la cabeza desde hace años y no encuentro bibliografía. Todo lo que he encontrado referente a espacios topológicos, parte de espacios en los que hay definida una distancia, que se utiliza para definir las bolas y de esa definición se construyen los abiertos que forman la topología y por tanto el espacio topológico correspondiente. Mi interés (consecuencia de mi obsesión por lo abstracto) es encontrar bibliografía sobre espacios toòlógicos en los que no hay definida una distancia y se construyen los abiertos sin ese concepto, y por tanto sin pasar por las bolas; he encontrado algo con el epígrafe de espacios no metrizables; pero no tratan con profundidad los topológicos que derivan de ellos ¿Puedes indicarme donde encontrar información sobre ese tema? ¿o es una idea que me he creado yo solito?. Gracias de antemano

    • @43hi
      @43hi 3 роки тому

      @@fernandogeijo2769
      Hola Fernando, leí tu comentario respecto a espacios topológicos y me gustaría darte algunas recomendaciones bibliográficas. La mayoría son de textos en Inglés pero daré uno en español por si se te dificulta el inglés.
      Primero, respecto a lo que comentas sobre la construcción de los abiertos. La mayoría de libros empiezan por los espacios métricos pues se espera que el lector tenga ya cierto conocimiento de Análisis Matemático y de esta manera ya estén cómodos con la idea de bolas para poder formar la Topología de manera más “natural”. Aún así, los libros que voy a recomendar siguen una línea más general que espacios métricos.
      En general la forma axiomática es la que no utiliza las bolas. En ella los abiertos se definen como elementos de una familia de subconjuntos de un conjunto que cumplen ciertas propiedades.
      Bueno sin más, los libros son:
      -General Topology. Munkres, James
      Este me parece que es un buen libro para iniciar, aunque sí se necesita un buen grado de madurez matemática
      -General Topology. Willard
      -Topology. Djugundi
      Este me parece que es el más viejo de los anteriores mencionados. Como tal puede tener alguna notación o definiciones un tanto diferentes pero diría que sigue siendo un buen libro.
      -Elementos de Topología General. Fidel Casarrubias y Ángel Tamariz
      Este último tiene la ventaja de que si lo buscas así en Google te sale inmediatamente el PDF pues es de uso libre. Me parece que su fuerte más grande de este libro son sus ejercicios pues en ellos se ahondan temas mas modernos a comparación de los otros. Además de que te concentras solo en la parte matemática y no en el inglés.
      Espero que esto te sirva, estoy seguro que de todos puedes encontrar los pdf
      Saludos

    • @fernandogeijo2769
      @fernandogeijo2769 3 роки тому +2

      @@43hi Muchas gracias por la información. Hace muchos años, un profesor de matematicas nos dió una introducción axiomática a la topología; pero no pasó de los conceptos fundamentales. La idea de abstraer conceptos "geometricos" me cautivó. Era el año 1973 y en una Universidad agitada por la política que acabó cerrada, no terminamos de avanzar.
      La vida familiar y profesional no me ha dejado tiempo para satisfacer mi curiosidad y ahora jubilado y viudo tengo todo el tiempo del mundo.

    • @fernandogeijo2769
      @fernandogeijo2769 3 роки тому +1

      @@43hi He empezado con el texto de Casarrubias t Tamariz. El no utilizar textos en Inglés es por pura pereza (profesionalmente he trabajado en Inglés muchos años); pero el texto de momento está cumpliendo mis expectativas. Los conceptos generales no son nuevos para mí (soy un químico rarito) pero el enfoque del desarrollo es lo que buscaba.

  • @miku5350
    @miku5350 3 роки тому +5

    Como siempre bellísima vídeo, explicación y animación 👌

  • @luisfernandoibarraperez3347
    @luisfernandoibarraperez3347 3 роки тому +9

    Algo respecto a Ramanujan estaría genial

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому +2

      Ciertamente! De hecho, ya tenemos la ilustración de Ramanujan hecha

  • @diegomoreno3237
    @diegomoreno3237 3 роки тому +1

    Hermoso el grado de abstracción que se necesita para razonar sobre estos conceptos.
    ¡Esperando el siguiente!

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому

      ¡Gracias Diego!
      Esperamos tenerlo listo la semana próxima

  • @arcadioibanezriveros3027
    @arcadioibanezriveros3027 3 роки тому +18

    Yo sólo conocia el método de Cauchy para completar Q con límites.

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому +6

      Es otra posibilidad pero hicimos el tratamiento de Dedekind para darle un poco de contenido histórico al ser el primero en formalizar los números reales.
      Un saludo Arcadio

  • @pedromanuelnegretepetro7170
    @pedromanuelnegretepetro7170 3 роки тому +1

    Hermosa explicación. Felicitaciones excelente video

  • @angelespinosa906
    @angelespinosa906 3 роки тому +2

    🤯🤯🤯 espectacular! Felicidades gran video

  • @alfonsogutierrez5657
    @alfonsogutierrez5657 Рік тому

    Buenas tardes Cuando se habla de máximo y mínimo se refiere a cota máxima y mínima ?

  • @camilochitivo1667
    @camilochitivo1667 3 роки тому +2

    Excelente video como siempre!!!

  • @jordanrac7623
    @jordanrac7623 3 роки тому +2

    Excelente video, gracias por este contenido!!

  • @juandavidramirez6068
    @juandavidramirez6068 3 роки тому +1

    Fantástico video, como siempre!!!
    Muchas gracias por este contenido.
    Ojalá hubiera salido cuando cursaba segundo.
    Me hubiera ido mejor jejeje

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому +1

      jajaja, ¡Muchas gracias!
      La semana que viene continuaremos con el Principio del Supremo y la siguiente demostraremos el Teorema de los intervalos encajados. Queremos seguir con estos vídeos y ver también sucesiones y series de números relaes
      ¡Saludos!

  • @calderonortizkevin9470
    @calderonortizkevin9470 3 роки тому +1

    ¡Excelente vídeo!
    Muchas gracias por el contenido. :)
    Saludos.

  • @titoapen6519
    @titoapen6519 3 роки тому +1

    Madre de Cthulhu. Nunca creí que viviría para ver este nivel de matemática.
    Son lo máximo. Espero que sigan adelante y que sigan creciendo. ✨

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому +1

      🤣🤣🤣 ¡Muchas gracias TitO!
      La semana próxima queremos publicar la continuación con el principio del supremo y la siguiente utilizarlo para demostrar el Teorema de los intervalos encajados.
      Probablemente continuemos con una serie más larga sobre sucesiones y series de números reales.
      ¡Saludos!

  • @Ghujkiokk
    @Ghujkiokk 2 роки тому +1

    Genial video amigo.
    Muy bien explicado
    😊😊

  • @pierobazalar4885
    @pierobazalar4885 3 роки тому +1

    Excelente video, pero me quedó una pregunta: ¿Por qué cuando definimos las secciones generadas por una cortadura hecha por un número racional decimos que no tiene máximo, pero sí, mínimo? Si la cortadura "a" es un número racional, se podría identificar como el mínimo valor de la sección A2, por lo tanto también se podría identificar como el máximo valor de la sección A1 (siendo A1 y A2, las secciones generadas por la cortadura "a" respectivamente). Ojalá puedas resolver mi duda, muchas gracias de antemano.

  •  2 роки тому +1

    Wooow. Excelente explicación 😀

  • @martinperu6207
    @martinperu6207 3 роки тому +1

    Gracias.. Eres muy didáctico en tus enseñanzas de mate.. Porfa dale un check al Algebra Lineal....y sería genial Real Analysis in Rn.. Gracias.

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому

      ¡De nada! Estamos preparando nuevos vídeos para continuar el curso de Álgebra Lineal y vamos a continuar con Análisis real también.

  • @rzilva9889
    @rzilva9889 3 роки тому +2

    El canal de Matemáticas con mayor clase. Gracias por esta joya. Pero, a quien puede no gustarle esta joya?. Si, si hay uno y es un bolonio.

  • @juanmolinas
    @juanmolinas 3 роки тому +2

    Excelente video!, nunca había visto una explicación tan clara sobre qué son los números reales!, el equipo arquimedes tube es espectacular!..

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому

      ¡Gracias Juan! A esta serie le dedicaremos un par de vídeos más y probablemente continuemos estudiando sucesiones y series de números reales.
      ¡Saludos!

  • @marcod5004
    @marcod5004 2 роки тому +2

    Dedekin era un genio

  • @pedrosuarez544
    @pedrosuarez544 3 роки тому +1

    ¿ Existen las restas infinitas ( en contraposición a las sumas infinitas ) ?

    • @ricardomejias3629
      @ricardomejias3629 3 роки тому +2

      La operación resta es la podemos reducir a sumar opuestos (por ej 5-3=5+(-3)). Además, por propiedad de sumatoria tenemos que suma (-a1+-a2+-a3+...)=-suma(a1+a2+a3+...), así que sí

  • @breyv5991
    @breyv5991 3 роки тому +2

    Sería genial que subieras un vídeo sobre el teorema de Heine borel o el de weistrass

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому

      Queremos dar continuidad a esta serie y llegar a ver teoremas importantes del Análisis Matemático
      ¡Saludos!

  • @macrocommercetrade9289
    @macrocommercetrade9289 3 роки тому +1

    Excelente 👌 video , aveces decimos que andamos en hombros de gigantes, y ustedes son los míos 😉

  • @ganyahsoldier7199
    @ganyahsoldier7199 3 роки тому +1

    Que buenos videos x favor !!

  • @NERV9863
    @NERV9863 3 роки тому

    Por ser R un cuerpo se deduce que también es un conjunto convexo?

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому

      R es convexo pero ¿Cuál es la relación de la convexidad con la estructura de cuerpo?

  • @franciscoanyosa4108
    @franciscoanyosa4108 3 роки тому +1

    Excelente canal

  • @christianmosquera9044
    @christianmosquera9044 Рік тому

    excelente video maravilloso

  • @unasimplemanzana5678
    @unasimplemanzana5678 3 роки тому +1

    Ushhhhh siempre quise ver un vídeo sobre este tema ya que lo omitimos en mi curso del cálculo solo ví a leve el de cantor.

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому

      Queremos continuar la semana próxima con el principio del supremo y a seguidamente con el teorema de los intervalos encajados.

  • @matematica6pi
    @matematica6pi 3 роки тому

    Buenas tardes estimados, vieron este trabajo sobre las inconsistencias de las cortaduras de Dedekind? ua-cam.com/video/4DNlEq0ZrTo/v-deo.html

  • @zlovako
    @zlovako 6 днів тому

    A lo mejor está fue de fecha lo que voy a decir, pero en el paraíso de Cantor, los reáles son una selva. 😊

  • @paulgibson6440
    @paulgibson6440 2 роки тому +3

    No lo sé, está idea de las cortaduras no me termina de convencer. Según cantor tambien realizó una construcción de R, aunque conociendo a cantor imagina que sería aún más loca y poco intuitiva que está.

  • @AltinoSantos
    @AltinoSantos 3 роки тому +1

    Bom vídeo, como sempre! Explicações claras e nada maçadoras.

  • @alexwolffe7805
    @alexwolffe7805 3 роки тому +1

    ¡Me encanta!

  • @carlosivanrabaschino5654
    @carlosivanrabaschino5654 3 роки тому +1

    Jajaja , ¿Arquimides prefiria tirar a un tripulante que lo hizo dudar antes que tener que pensar? No me creo ese cuento ,pero hay que admitir que es muy chistoso .
    Grandioso video

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому +1

      La leyenda posiblemente no es cierta. De hecho otras fuentes afirman que simplemente fue desterrado de la comunidad pitagórica. ¡Pero no era Arquímedes quien le hecho sino Pitágoras!

    • @carlosivanrabaschino5654
      @carlosivanrabaschino5654 3 роки тому

      🤣🤣🤣🤣 escribí Arquímedes en ves de Pitágoras por error jajaja

  • @saidmonroy07
    @saidmonroy07 3 роки тому +1

    Más videos!

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому

      Esta misma semana publicaremos el siguiente sobre el Teorema de los Intervalos Encajados. ¡Saludos!

  • @068LAICEPS
    @068LAICEPS Рік тому

    Nooo, mi cerebro. Esto parece la continuación de la pesadilla de hallar el límite delta-epsilon 😢. Gracias por la explicación.

    • @ArchimedesTube
      @ArchimedesTube  Рік тому

      jajaja, pues un vídeo sobre la noción de límite explicando la idea y la definición epsilon-delta lo tenemos pendiente

  • @mundomate2780
    @mundomate2780 2 роки тому

    Osea que los irracionales no son un cuerpo? Pues al multiplicar un irracional ppr otro aveces da un numero real.

  • @redjohn8870
    @redjohn8870 6 місяців тому

    6:59

  • @mike-qf1ui
    @mike-qf1ui 3 роки тому +1

    Increíble😱😱😱😱🤓

  • @yatusabesnetaquesabe679
    @yatusabesnetaquesabe679 3 роки тому +1

    Como no soy matemático no he entendido pero buen trabajo

  • @a0z9
    @a0z9 3 роки тому +1

    Dedekind hizo lo que hoy en día se llama tapar agujeros.

  • @martinperu6207
    @martinperu6207 3 роки тому +1

    Y aun falta los Top 10 de math Books.

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому

      Cierto, hemos tenido que parar un poco para terminar algunos vídeos y por el comienzo de las clases pero en breve lo retomaremos

  • @quantumuleap7902
    @quantumuleap7902 Місяць тому

    Raíz de dos, es una posición sobre la recta continua... Pero no puede ser representada con exactitud pon un racional... Y menos... Pon un número con decimales... Ningún sistema numérico puede representar raíz de 2 con exactitud, es decir, ERROR CERO

  • @hugo50010pump
    @hugo50010pump 3 роки тому

    La primera vez que veo el uso de la palabra cuerpo en lugar de grupo

    • @ArchimedesTube
      @ArchimedesTube  3 роки тому

      Pero no es la misma cosa. Un grupo solo tiene una operación asociativa, con elemento neutro e inverso y un cuerpo tiene dos operaciones como se dice en el vídeo. A veces se le llama campo ya que en inglés se denomina 'field' a un cuerpo.

  • @quantumuleap7902
    @quantumuleap7902 Місяць тому

    ¿La recta de los números reales? ¿De dónde sale? ... Y luego hace cortaduras ¿En que?... Por inferencia un número con un decimal, es un entero entre 10, uno con dos decimales, es un entero entre 100, uno con N decimales es un entero entre 10 a la N... LOS NÚMEROS CON DECIMALES SON EQUIVALENTES A LOS RACIONALES... NO SON CONTINUOS... LA RECTA SI ES CONTINUA... LAS CORTADURAS SON SOBRE EL CONTINUO DE LA RECTA...
    Los números con decimales siempre son RACIONALES... PERO AL REVÉS NO... UN TERCIO NO ES REPRESENTABLE, EXACTAMENTE, ES DECIR SIN ERROR, POR UN NÚMERO CON DECIMALES

  • @davidpedreno7081
    @davidpedreno7081 3 роки тому +1

    El vídeo se subió hace 15 segundos

  • @SantiagoLopez-uu6uk
    @SantiagoLopez-uu6uk 3 роки тому

    creo que estallaron 2 neuronas, una sigue estallando

  • @leinaitsirhc
    @leinaitsirhc 3 роки тому

    #SoME1

  • @quantumuleap7902
    @quantumuleap7902 Місяць тому

    Raíz de dos es un nombre... Cómo π... No un número

  • @paulgibson6440
    @paulgibson6440 2 роки тому +1

    Disculpa urtzi. No cres que la construcción de R merezca una explicación más intuitiva. Es que está explicación de dedekind es extremadamente artificial y forzada.

  • @mbchd1811
    @mbchd1811 3 роки тому

    SEGUNDO COMENTARIOO

  • @Leninalberto09
    @Leninalberto09 3 роки тому

    No lo entendí y me dio sueño

  • @Will-Ch
    @Will-Ch 2 роки тому +1

    Hola, a que se refiere con "agujeros" ??

    • @ArchimedesTube
      @ArchimedesTube  2 роки тому +1

      Hola Will,
      Una recta formada solo por números racionales tendría agujeros, pues, por ejemplo raíz de 2 no es un número racional. Podemos aproximarlo por racionales
      1 < √ 2

    • @Will-Ch
      @Will-Ch 2 роки тому

      @@ArchimedesTube Ahora ya entendí mejor , disculpa la molestias y por tomarte un tiempo en responderme , muchas gracias! , saludos desde Perú.