Закономерности простых чисел [Numberphile на русском]

Поділитися
Вставка
  • Опубліковано 28 гру 2024

КОМЕНТАРІ • 373

  • @Uni-Coder
    @Uni-Coder 6 років тому +358

    "Кратно 24 плюс один". Дурацкая фраза. Звучит, будто кратно 25. Сказали бы: "делится на 24 с остатком 1". С оригинала *one more than a multiple of 24* можно перевести как *на единицу больше, чем кратное 24* .

    • @jonsnow7956
      @jonsnow7956 6 років тому +16

      mrbus2007 глупая придирка, как по мне

    • @Uni-Coder
      @Uni-Coder 6 років тому +19

      @@jonsnow7956 В чем заключается ее глупость?

    • @Blagumup
      @Blagumup 6 років тому +11

      А зачем говорить "кратно 24 плюс один" в том же смысле, что и просто "кратно 25"? Если бы имелось в виду кратно 25, то так бы и сказали

    • @eduardkomarov714
      @eduardkomarov714 6 років тому +15

      @@Blagumup кратно 24+1 не равно кратно 25

    • @spiderquer
      @spiderquer 6 років тому +33

      Вы читать не умеете? Тут автор коммента говорит правильно. Эта ситуация анологична с 'казнить нельзя помиловать'. Понимание меняется от запятой. Та же история с 'кратно 24+1'. Ее можно посчитать как 'кратно '24+1''(Когда 24+1 показывается как одно выражение) и когда кратно 24+ '1', где 1ица показана после выражения. Автор тут прав и при переводе надо было быть чуть более корректным.

  • @МихаилЗборовский-ъ1ш
    @МихаилЗборовский-ъ1ш 6 років тому +99

    Меня прикальнуло когда он долго не мог возвессти в квадрат

    • @USER-s6w9x
      @USER-s6w9x 5 років тому +15

      Это он прикалывался, он в уме 5 значные умножает и выводит из под корня !!!

    • @David_USA
      @David_USA 4 роки тому

      Считать просто числа, даже математикам, уже не нужно

    • @Владимир-ъ5м1в
      @Владимир-ъ5м1в 3 роки тому +1

      @@USER-s6w9x , согласен, чисто стебанулся!

  • @Владимир-ъ5м1в
    @Владимир-ъ5м1в 3 роки тому +6

    Редко подписываюсь после первого же ролика, но тут без вариантов: лайк, подписка и + сохранил у себя.
    Великолепно!

  • @DmirDK
    @DmirDK 6 років тому +415

    Он опять облажался с квадратом. Ничего нового

    • @МаксимКириченко-в6д
      @МаксимКириченко-в6д 6 років тому +7

      Где он облажался?

    • @DmirDK
      @DmirDK 6 років тому +16

      @@МаксимКириченко-в6д 17^2=139 в начале посмотри внимательно

    • @Malmazm
      @Malmazm 6 років тому +6

      Дима Добрик ахах я так и не понял как он так посчитал)

    • @meganekka
      @meganekka 6 років тому +23

      @@Malmazm мне кажется он хотел посчитать во так 17х17=17x10+17x7=170+10х7+7х7=170+70+49.
      но что-то пошло не так

    • @ЭдуардЛутков
      @ЭдуардЛутков 6 років тому +46

      Он показал, что его склад ума не арифметический. Не искусственный интеллект, как у некоторых. Он мыслит образно, ему важна идея. У него обьемное видение, 3д.

  • @ИгорьОвчинников-г7о
    @ИгорьОвчинников-г7о 5 років тому +29

    У меня на олимпиаде по матану было задание доказать эту фигню. Первое, что я сделал - расписал как (p-1)*(p+1), а потом за 10 минут додумался до доказательства через кратность соседних. Спасибо Мэтту за то, что поднял мне самооценку, я тогда и не задумался, что сделал что-то крутое

    • @begula_chan
      @begula_chan 5 місяців тому

      Не знаю что у вас была за олимпиада такая, но это очень простая задача

    • @asthjku
      @asthjku 18 днів тому

      ​@@begula_chan ну если так, тогда докажи что сума любых двох простых чисел равно парному числу

  • @ivanovnikitok
    @ivanovnikitok 6 років тому +127

    Второе доказательство более красивое, но такие штуки могут выдумывать только долбаные гении, а до первого мог бы и обычный человек дойти при наличии достаточного упорства , что делает его привлекательным для меня:)

    • @IgorPetrichuk
      @IgorPetrichuk 6 років тому +10

      не соглашусь, здесь речь не идет о гениальности. Второй способ похож на решение тригонометрических уравнений с помощью тригонометрического круга. Это один из способов. А видимость гениальности у тебя только потому, что ты в первый раз увидел не аналитический, а синтетический метод. Многие задачи, в том числе на доказательства тожества, можно решать как минимум двумя способами. Но в соглашусь с тобой по поводу красоты второго способа!!!

    • @ppomogaev9
      @ppomogaev9 6 років тому +1

      Ещё в 8 классе при решении этой задачки придумал второй способ точь в точь. Этот способ не такой уж и сложный в плане создания его с нуля.

    • @klmbI
      @klmbI 5 років тому

      @@IgorPetrichuk как я понял, первое - путь, как прийти к этому выводу, а второе - как проще понять его.

    • @zzz942
      @zzz942 5 років тому

      Оно же примитивное и почти в лоб...

    • @Шахи3000
      @Шахи3000 5 років тому

      Когда ты много решаешь задачек на теорию чисел, ты такие штуки быстро находишь

  • @АнтонПархомин
    @АнтонПархомин 6 років тому +89

    0:40 - это я на контрольной по алгебре(

  • @lolman1361
    @lolman1361 4 роки тому +4

    Воу мужик, а ты хорош. С новым годом

  • @МаксимКириченко-в6д
    @МаксимКириченко-в6д 6 років тому +19

    Очень круто! Почему я сам не догадался?!

  • @google_cache
    @google_cache 6 років тому +9

    Ещё можно перефразировать так: любое простое число, возведённое в квадрат и уменьшенное на единицу, кратно 24-м! Так проще понять.

    • @LEA_82
      @LEA_82 3 роки тому

      надо уточнить от 5 и выше

    • @jabkamda5822
      @jabkamda5822 Рік тому

      25 не простое число, но также делиться по этой формуле

  • @ЗакирНабиулин
    @ЗакирНабиулин 6 років тому +15

    Класный канал, мозг взорвал. Процветания каналу

  • @heipl8896
    @heipl8896 6 років тому +49

    Когда мы в школе в 7 классе должны были доказать, что p2 - 1 кратное 24, я это доказал вторым способом, не зная даже об его существовании

    • @jemzaratrunumberovich4595
      @jemzaratrunumberovich4595 3 роки тому

      P2-1 кратное 1 -_-

    • @kolotilov
      @kolotilov 2 роки тому

      Как будто существование доказательства на что-то влияет
      Ты же не войну и мир переписал слово в слово, чтобы так восхищаться

  • @МаксимМеснянкин-л6и
    @МаксимМеснянкин-л6и 6 років тому +21

    Многие из вас, дорогие комментаторы, посмотрев это видео, решили, что можно вывести формулу простых чисел. То есть найти такую функцию f(x), которая будет возвращать простое число при любом натуральном x. А ведь такой функции НЕТ! Если бы она была, то проблема поиска самого большого простого числа была бы не актуальна. Просто подставил в функцию x побольше - и вот тебе, простое число, больше любого простого числа, известного математике на сегодняшний день. А между прочим, один университет объявил премию тому, кто побьёт мировой рекорд по самому большому известному простому числу. Найдёт число, докажет, что оно простое, и что оно больше самого большого простого числа, известного на сегодняшний день. Премия будет содержать столько долларов, сколько будет цифр в этом числе. Разве стал бы этот институт объявлять эту премию, если бы для простых чисел была формула?

    • @sheburah
      @sheburah 6 років тому +12

      открою втихаря формулу и буду банкротить этот универ вместе со страной где он находится

    • @sstm1716
      @sstm1716 6 років тому +8

      Формулы то может и нет... Но есть программы, которые считают простые числа (их может написать ребёнок), а вот если туда подставить условие, что надо перебирать только:
      6x - 1
      6x +1
      Т.к только ни могут быть простыми, то это займёт в разы меньше времени.
      P.S чёт не помню такого института и премии. (Может и есть, но у них тогда самый мощный комп в мире, и они считают числа быстрее всех, чтоб никому не платить)

    • @artiomboyko
      @artiomboyko 6 років тому +2

      То, что формулу не нашли ещё не значит, что её нет!

    • @deadlysquad13
      @deadlysquad13 6 років тому

      @@sstm1716 Полностью поддерживаю, как раз пытался решить задачку с простыми числами по программированию, видео очень помогло.

    • @glukmaker
      @glukmaker 6 років тому

      хм... А это тогда что:
      ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE см. Формулы для нахождения простых чисел
      имеется ввиду вот это: wikimedia.org/api/rest_v1/media/math/render/svg/67ff705ca6b088d4defa0fab7453c0b1f52e881d

  • @ИльяАфанасенко-о1ш
    @ИльяАфанасенко-о1ш 6 років тому +44

    От второго доказательства чуть не кончил. Ща буду марать бумагу, в попытках понять, что там обнаружится при возведении в третью, четвертую и n-ю степени.

    • @bodyabodya627
      @bodyabodya627 5 років тому +1

      Илья Афанасенко что получилось?

    • @Frapew2ka
      @Frapew2ka 4 роки тому +4

      @@bodyabodya627 подождите, он еще в n-ю возводит))

    • @bodyabodya627
      @bodyabodya627 4 роки тому

      n-уння какая-то

    • @Frapew2ka
      @Frapew2ka 4 роки тому

      @@bodyabodya627 ))

    • @gintonic2982
      @gintonic2982 4 роки тому +4

      @@bodyabodya627 Уже 6 месяцев прошло, начинаем волноваться(

  • @KonstantinDedov
    @KonstantinDedov 5 років тому +31

    Это не закономерность, а свойство: закономерность позволяет быстро генерировать новые простые числа, а это до сих пор никто не умеет.

    • @KonstantinDedov
      @KonstantinDedov 5 років тому

      @@ВТ201КривоконевАлексей он ломается при c=3

    • @ИгорьЛопатин-м8т
      @ИгорьЛопатин-м8т 4 роки тому

      @@ВТ201КривоконевАлексей но это свойство любых натуральных чисел не делящихся на 3 и 2...

    • @BAGEL_284
      @BAGEL_284 4 роки тому +1

      Нет ничего проще... Добавьте к произведению всех простых чисел 1 и получите новое простое число

    • @KonstantinDedov
      @KonstantinDedov 4 роки тому

      @@BAGEL_284 мы не можем перемножить все простые числа, так как их множество бесконечно

    • @КурочкаКрокодил
      @КурочкаКрокодил 4 роки тому +7

      @@BAGEL_284 Это так просто не работает. Вот вам пример. Перемножим ВСЕ простые числа от 2 до 13. И добавим 1. (2*3*5*7*11*13)+1=30031, думаете это простое число? А вот и нет. 30031 = 59*509

  • @alinazayko8445
    @alinazayko8445 2 місяці тому

    Неделимый,
    Длинною вереницею,
    Уникальные,
    Дверь отворяющие.
    Музыка,
    Вечно свучащая,
    Вайга пульсирует,
    Пролетающая.
    По божественным числам,
    Я летела в поющем тоннель,
    Неделимая,
    Но летящая,
    Из извечного
    Силового центра.
    Все маршруты прописаны,
    Алгоритмы читающая.
    Удаление с усложнением,
    Пульсом разреженным.
    Удивительно,
    Что в пути моём,
    Я тебя встретила
    Впереди себя,
    С временною завесою.
    В поколение...
    Подожди меня,
    Подчини себе время.
    Мы без времени...
    Рассчитаем тоннели...
    Обними меня,
    Создадим расщепление
    Веток будущих
    Воплощение.
    Поцелуй меня.
    Мы смещение,
    Неучтенное
    Богом решение.
    Мы-то знаем,
    Что оно верное,
    По любви все решения верные.

  • @gburan19
    @gburan19 5 років тому +2

    Это настолько очевидно , так как -1=(p-1)! mod p
    (следствие малой теоремы Ферма) , поэтому , достаточно большие простые числа в квадрате -1 будут кратны 4!=120, потом - 5!=720 и т.д 6! , 7!
    Это пример того, как простые вещи объясняют долго и муторно, что только еще хуже всё запутывают.

  • @kingtv9245
    @kingtv9245 5 років тому +4

    то, что у простых чисел есть какие-то закономерности, еще Эйлер обнаружил в 18 веке

  • @kamandaraliyev8573
    @kamandaraliyev8573 4 роки тому

    Самое лучшее изобретение человека - это цифры!
    Потому что человек сам того не зная создал собственный мир с кучей загадок, связей, последовательности, о которых он даже не может представить.

  • @простоопростыхчисел

    Я открыл универсальный закон распределения простых чисел. Это красиво и закономерно

  • @НикитаПобедитель-к7ю
    @НикитаПобедитель-к7ю 6 років тому +151

    Секс с мозгом

  • @Hevonn
    @Hevonn 5 років тому +2

    СПС, было интересно)

  • @KirillReech
    @KirillReech 3 роки тому +3

    Можно было не расписывать на 4 случая. А возвести 6k+-1 в квадрат. Там бы вышло 36k^2+-12k + 1. Рассматриваем 36k^2 +-12k. Выносим 12k и получается 12k(3k+-1). 12 делится на 12, k(3k+-1) - всегда четное, так как k и 3k+1 разной четности. Вывод: число делится на 2*12 = 24.

  • @One-androgyne
    @One-androgyne 6 років тому +16

    возможно это можно доказать через Малую теорему Ферма, я бы даже возможно сказал это следствие Малой теоремы Ферма.

  • @borissklyar1415
    @borissklyar1415 5 років тому +5

    If we cross out from set of positive integers all numbers divisible by 2 and all numbers divisible by 3 then
    all remaining numbers (including remaining composite numbers and ALL prime numberrs) will be in one of two forms 6k-1 or 6k+1, so it's not suprising that every prime plus or minus 1 is divisible by 6.

    • @LEA_82
      @LEA_82 3 роки тому

      ***поэтому неудивительно, что каждое простое число плюс или минус 1 делится на 6*** не все 179 424 461, если вычитать 1, то не делится на 6.

    • @Zenofex_
      @Zenofex_ Рік тому

      ​@@LEA_82 вычитать или прибавлять

  • @ЗакирНабиулин
    @ЗакирНабиулин 6 років тому +5

    Пришлось пересмотреть 2 раза, чтоб понять😁

  • @АнонАнонов-ы6о
    @АнонАнонов-ы6о 5 років тому +13

    0:54 Вы подсунули мне фальшивого числофила!

  • @СергейОрлов-ц4г
    @СергейОрлов-ц4г 3 роки тому

    100% брал пример с доказательства теоремы Ферма. У него там тоже все числа поделились на группы и он их проверил.

  • @pihtalikgrisha8718
    @pihtalikgrisha8718 6 років тому +12

    Каждое простое число делиться на на 2 с остатком 1, (кроме двойки естественно)

  • @vadimpetker2689
    @vadimpetker2689 2 роки тому

    Я кажется нашел кое-что. Я подумал что раз математика это подсчет абстрактного, то почему бы не посчитать пустоту что между простыми числами? Даже не числа, а ячейки чисел. И что интересно, они своим количкством соответствуют по возрастанию тем же простым числам за некоторыми изменениями. Сначала идет по 1 пропуску, потом 3, 5 7 и ждешь 11 но получаешь как бы ускорение 13, а потом как бы петля возвращается до 9 (которая не простое число) и вот уже выходит на 11... Там дальше еще интересней, кто понял сам найдет. Я выписал только очередность новых появляющиеся количеств промежуточных ячеек для чисел между простыми. 1 3 5 7 13 9 11 17 19 21 33 23 15 25 27
    0-1-2
    7-3-11
    23-5-29
    89-7-97
    113-13-127
    181-9-191
    199-11-211
    523-17-541
    887-19-907
    1129-21-1151
    1327-33-1361
    1669-23-1693
    1933-15-1949
    2477-25-2503
    3271-27-3299
    Визуализировать бы это на пк..

  • @vsweetbread
    @vsweetbread 5 років тому +6

    4:30 Пицца?

  • @ХАЙПКАКОЙ-ТО
    @ХАЙПКАКОЙ-ТО 3 роки тому

    Подскажите калькулятор для проверки на простоту больших чисел (больше 128 знаков). Для андроида.

  • @СтаниславСерегин-р4ч
    @СтаниславСерегин-р4ч 5 місяців тому

    1) Ошибка в утверждении, что любое. 2 и 3 не подходят.
    2) (6k+-1)^2 = 36k^2+-12k+1 = 12k*(3k+1)+1. Произведение делится на 24, как для чётных k, так и для нечётных.

  • @DPEBHue
    @DPEBHue 4 роки тому +2

    один вопрос - зачем? для чего? в каком магазине это применить?

    • @zammizammii2338
      @zammizammii2338 4 роки тому

      В магазе нет а вот программирование может понадобиться

  • @Е.Пишпекский-г8ы
    @Е.Пишпекский-г8ы 6 років тому +11

    есть чиму поучица спасиба

  • @ДРАЙВ-и4й
    @ДРАЙВ-и4й Рік тому

    Кратные 6 (произведение субпростых чисел 2 и 3 ) - именно поэтому встречаются чаще (как в решете Эратосфена убираем кратные 6.
    так допустим 6x ² + 6x + 31 при x= 0,1,2,3,4... 27,28 дает подряд 29 простых чисел

  • @Matematyk2024
    @Matematyk2024 Рік тому

    Я почти всю ночь думал, как найти k-й член последовательности простых чисел в этом фильме, так и не нашел. Очень хороший фильм. С уважением

  • @SergeySvotin
    @SergeySvotin 3 роки тому

    Очень весело, 2 в квадрате - 4, 3 в квадрате - 9. Не ожидал такого провала

  • @АрикоА
    @АрикоА 3 місяці тому

    доказал за минуту, доказав что x²-1 делится на 24 при простом х, ведь оно равно (x+1)*(x-1), эти 2 числа делятся на 2, ведь x простое и не делится на 2, причем одно из них делится и на 4, также одно из них делится на 3, ведь х не делится на 3, значит (х+1)*(х-1) делится на 2*3*4=24.

  • @marvinheemeyer8341
    @marvinheemeyer8341 5 років тому +1

    ништяк👍👋👋👋

  • @Rara_neutral
    @Rara_neutral 2 роки тому +1

    Cool Video

  • @ИгорьАнжиков2711
    @ИгорьАнжиков2711 5 років тому

    Когда не было доступных калькуляторов, приходилось в уме запоминать квадраты двухзначных чисел и частоупотребительные значения тригонометрических функций для ускорения вычислений.

    • @badretdyn
      @badretdyn 2 роки тому

      до сих пор стоит помнить.

  • @WayfaringHD
    @WayfaringHD Рік тому

    Счастливые люди, кто-то деньги зарабатывает, кто-то дома строит, кто-то бухает, а они всю жизнь что-то считают, считают... 😅

  • @ЛохЦветочный-г4х
    @ЛохЦветочный-г4х 3 роки тому +1

    *Число 989* - ну да, ну да, пошел я на хер...

  • @ДенисЛитвинов-ш9ъ
    @ДенисЛитвинов-ш9ъ 5 років тому

    А сказать что числа могут быть простыми когда остаток равен 1 или 5

  • @DASD934
    @DASD934 6 років тому

    Конкретно у простых чисел есть своя точная закономерность, каждое из них делится на все предыдущие(меньшие) простые числа с остатком. Пример - 7/2=3.5, 7/3=2.(3), 7/5=1.4. Таким способом они легко вычисляются.

    • @ДмитроПрищепа-д3я
      @ДмитроПрищепа-д3я 6 років тому +2

      Может и вычисляются, но точно не легко.

    • @МаксимМеснянкин-л6и
      @МаксимМеснянкин-л6и 6 років тому +2

      Простое число будет на любое другое число (кроме себя и еденицы) делиться с остатком. Подумайте, почему )

  • @mentosnlink4505
    @mentosnlink4505 6 років тому

    Я таблицу квадратов до сотни знаю, и это помогает вычислять и другие числа большие 100. Вот 17 это пффффф как легко!

  • @EdwardNorthwind
    @EdwardNorthwind 4 роки тому +1

    Может, квадрат каждого простого числа и делится на 24 с остатком 1. Но не каждое число, квадрат которого делится на 24 с остатком 1 -- является простым.
    Ведь 25 не простое число. Так же, как и: 35, 49, 65, 85... и т.д и т.п. Но все они удовлетворяют условию (n^2) mod 24 == 1.

    • @backer01
      @backer01 4 роки тому

      Да, тоже заметил это, перевод скорее всего корявый

  • @Khasayyy
    @Khasayyy 4 роки тому +8

    Как я - обычный человек, попал сюда? 😳

    • @Stalevik
      @Stalevik 7 місяців тому

      Ты был избран разгадать тайну числа 1263684940161

  • @maxpain5120
    @maxpain5120 6 років тому +4

    Четко

  • @sanek711
    @sanek711 6 років тому

    В начале поставил на паузу и доказал в уме за пару минут. А теперь вопрос: стоит ли смотреть дальше?

  • @АлександрКомаров-с6р

    То что квадрат любого простого числа кратен 24 с остатком 1 верно, но не все числа удовлетворяющие этому условию простые. 49*49=2401, 2401-1 =2400 что кратно 24. Так же будет со всеми квадратами простых чисел больше 5 (7*7=49,11*11=121, 13*13=169... и т.д.) Любое утверждение требует проверки.

    • @bodyabodya627
      @bodyabodya627 5 років тому

      Александр Комаров так он и не утверждал обратного. В чем смысл Вашего коммента? Объясните.

  • @yuriishykoryak5568
    @yuriishykoryak5568 5 років тому

    Не совсем понимаю принцип работы этой формулы. Могу ли я проверить ней на простоту числа? Делаю маленькую задачу с программача, а там нужно перебирать большие числа и проверять их на простоту)

    • @nadjakim638
      @nadjakim638 Рік тому

      Нет, никто еще не вывел общий алгоритм для всех простых чисел. Это одна из 6 нерешенных в мире задач по математике. Тот, кто найдет алгоритм сделает прорыв в криптографии и получит 1 миллион долларов

  • @polokus7553
    @polokus7553 4 роки тому

    То есть сначало нужно проверить кратное ли число 24 с остатком 1, потом находится ли он справа или слева от числа, кратного 6, а затем ещё нужно проверить его на кратность к меньшим простым числам ? Всего то...

  • @ГригорийСушков-э5и
    @ГригорийСушков-э5и 6 років тому +5

    А если к 2 и 3 ещё и 5 добавить будет интересно?

    • @quaternion-abicjdk
      @quaternion-abicjdk 6 років тому

      Тогда степень 2 станет степенем 4: р⁴-1 кратно 120. С 2 нельзя так уверенно сказать, т.к. 7²-1 не кратно 5

  • @простоопростыхчисел

    Я открыл закон распределения простых чисел. Самое смешное я не математик и не програмист

  • @НикитаГончаров-о8д
    @НикитаГончаров-о8д 5 років тому +12

    ДЕРЖУ В КУРСЕ. Не надо думать что эта особенность отличает простое число от сложного. Например число 637 сложное но тоже подвержено такой особенности.

    • @Eman-ue2kn
      @Eman-ue2kn 5 років тому

      Далеко пошёл...
      Этот метод не работает с 35 и 77, ибо они проходят эту проверку.

    • @mishaorlov9458
      @mishaorlov9458 5 років тому +2

      Так он же в видео об этом сказал на 10:53

    • @nijakhfgj3436
      @nijakhfgj3436 5 років тому

      25

    • @F_A_F123
      @F_A_F123 4 роки тому

      @@Eman-ue2kn но это не проверка

  • @Ammoder1
    @Ammoder1 4 роки тому

    Мне кажется он не доказал, что ВСЕ простые числа находятся слева либо справа от кратных 6. Только показал это на первой десятке

  • @andreykolesnikov126
    @andreykolesnikov126 6 років тому +7

    Побольше бы Numberphile.
    А Висовс или Веритасиум случайно не планируешь перевести?

    • @Solipschism
      @Solipschism  6 років тому +2

      Будет вам еще Numberphile! У Веритасиума есть интересные видео, что хочу перевести, да все руки не доходят :)

  • @umidullo
    @umidullo 5 років тому +5

    если есть закономерность, то значит простых чисел бесконечное количество?

    • @bodyabodya627
      @bodyabodya627 5 років тому +5

      Bear U строго говоря нет. Это напрямую лишь доказывает, что все простые числа подлежат этой закономерности. Но ничего не говорит о том сколько их этих чисел. иначе говоря, если простых чисел некое конечное число (например триллион гуголов) то все будет кратны 24-1 .А вот конечно ли их число из такого утверждения напрямую не следует.

  • @borissklyar1415
    @borissklyar1415 5 років тому +1

    have to do is simply pick up positive integers which do not appear in two pairs of 2-dimensional
    arrays

  • @АлександрВолков-е1р1и

    Посмотрите вот это: Закон расположения простых чисел найден.

  • @VladimirMGT
    @VladimirMGT 4 роки тому

    А если попроще? Например вот так @

  • @Tosha777100
    @Tosha777100 4 роки тому +1

    00:55 крутой калькулятор!

  • @vadimkasiuk2741
    @vadimkasiuk2741 6 років тому +2

    Это не всегда так работает, из этой закономерности можно вывести только приближенное количество простых чисел на каком-то промежутке , но не точное

  • @ADSemenov_ru
    @ADSemenov_ru Рік тому

    Если он исключит ещё и пять, то, может быть, сможет получить ещё одно свойство квадратов простых чисел.

  • @borissklyar1415
    @borissklyar1415 5 років тому +1

    Все очень просто : целые положительные числа, которые отсутствуют в обоих
    массивах A1 и A2
    | 6 11 16 21 26 .....|
    | 24 35 46 57 68 .... |
    A1(i,j)=6i^2+(6i-1)(j-1)= | 54 71 88 105 122 .... |
    | 96 119 142 165 188 ... |
    | ... ... ... ... ... ...|
    | 6 13 20 27 34 .....|
    | 24 37 50 63 76 .... |
    A2(i,j)=6i^2+(6i+1)(j-1)= | 54 73 92 111 130 .... |
    | 96 121 146 171 196 ... |
    | ... ... ... ... ... ...| i, j = 1, 2, 3,...
    являются индексами k простых чисел в последовательнсти S1(k)=6k-1 = 5, 11, 17, 23, 29, 35,....
    Эти числа: 1, 2, 3, 4,5,..., 7, 8, 9, 10 ,.., 12,..., 14, 15,..., 17, 18,19 , ...,..., 22, 23, ..., 25, ..., ...., 28, 29, ...
    Простые числа в последовательности S1(k)=6k-1:
    5, 11, 17, 23, 29, ..., 41, 47, 53, 59,,..., 71,..., 83, 89, ..., 101, 107, 113,..., ...., 131,.137, ..., 149,...,
    ..., 167, 173,..
    Целые положительные числа, которые отсутствуют в обоих
    массивах A3 и A4
    | 4 9 14 19 24 .....|
    | 20 31 42 53 64 .... |
    A3(i,j)=6i^2-2i+(6i-1)(j-1)= | 48 65 82 99 116 .... |
    | 88 111 134 157 180 ... |
    | ... ... ... ... ... ...|

    | 8 15 22 29 36 .....|
    A4(i,j)=6i^2+2i+(6i+1)(j-1) = | 28 41 54 67 80 .... |
    |60 79 98 117 136 ... |
    | 104 129 154 179 204 ... |
    | ... ... ... ... ... ...| i, j = 1, 2, 3,...
    являются индексами k простых чисел в последовательнсти S2(k)=6k+1 = 7, 13, 19, 25, 31, 37,....
    Эти числа: 1, 2, 3,..., 5, 6, 7, ...., ...., 10, 11, 12, 13,...., ...,16, 17, 18, ...., ..., 21, ..., 23,..., 25, 26, 27, ...,...,, 30,.......
    Простые числа в последовательности S2(k)=6k+1:
    7, 13, 19, ..., 31, 37, 43, .., ...., 61 67, 73, 79, .. ., ..., 97, 103, 109, ...., ...., 127, ..., 139,...., 151, 157, 163, ...,
    ...., 181,...
    See [link] (planet-source-code.com/vb/scripts/…)

    • @borissklyar1415
      @borissklyar1415 5 років тому

      see www.planet-source-code.com/vb/scripts/BrowseCategoryOrSearchResults.asp?lngWId=3&blnAuthorSearch=TRUE&lngAuthorId=21687209&strAuthorName=Boris%20Sklyar&txtMaxNumberOfEntriesPerPage=25

  • @ПавелЛасинский
    @ПавелЛасинский 5 років тому +3

    Интересно закономерность увеличения расстояния между простыми числами . по мере увеличения самих чисел

    • @borze47
      @borze47 5 років тому +2

      Кроме того, между двумя простыми числами могут быть числовые последовательности неограниченной величины, не содержащие ни одного простого числа, т.е. - бесконечно большие промежутки.

    • @kolotilov
      @kolotilov 2 роки тому

      Натуральный логарифм в помощь

    • @Сергей-й6ц4д
      @Сергей-й6ц4д Рік тому

      ​@@borze47 Простые числа не бесконечны

  • @ИльяМолод-ф5ы
    @ИльяМолод-ф5ы 5 років тому +1

    А куда единицу дел когда подставлял К=2m+1 в 6К+1?

  • @ЮлияБелова-ы8н
    @ЮлияБелова-ы8н 6 років тому +1

    Супер)

  • @ProMathematics
    @ProMathematics 2 роки тому +1

    Нет, ну если для него этот факт показался удивительным, а второе доказательство немыслимо сложным... Что ж, это показывает уровень деградации современного образования.

  • @veresivan
    @veresivan 5 років тому +1

    Гениально но в то же время обыденно.

  • @ВикторБелоусов-е6и

    2 k
    Пусть n = 2k+1 тогда, если (k!) + (-1) кратно 2k+1, то n - простое число.
    (В первой строке 2 и k - показатели степени при (k!) и (-1) ). VicVV.

    • @ВикторБелоусов-е6и
      @ВикторБелоусов-е6и 4 роки тому +1

      . 2 k
      Пусть n = 2k+1 тогда, если (k!) + (-1) кратно 2k+1, то n - простое число.
      (В первой строке 2 и k - показатели степени при (k!) и (-1) ). VicVV.

  • @АндрейГолубев-р5й
    @АндрейГолубев-р5й 6 років тому +1

    Значит ли это, то что можно вывести формулу простых чисел?

    • @jneshomo218
      @jneshomo218 6 років тому +7

      Андрей Голубев, быстрой формулы для вывода простого числа пока что нет, так как "быстрые паттерны" не работают во всех случаях, что не подходит для криптографии.

    • @ariadnavezuvian8458
      @ariadnavezuvian8458 6 років тому +10

      По сути, в видео было показано, как найти число, не кратное одновременно двум и трём. Все простые числа будут такими, но не все такие числа будут простыми.
      Следовательно, нужно сделать формулу, чтобы найти из них все числа не кратные 5, 7, 13, 17 и т.д. Наверное, что-то подобное используется для поиска новых простых чисел, но сложность вычислений растёт экспоненциально.

    • @ДмитроПрищепа-д3я
      @ДмитроПрищепа-д3я 6 років тому

      @@ariadnavezuvian8458 на самом деле есть некоторые формулы, дающие простые числа, я один раз нашел многочлен сотой степени, который их выдавал(нашел - нагуглил).
      Есть даже просто строгая формула: floor(n!mod(n+1)/n)*(n-1)+2. Для всех целых n выдает простые.

    • @АлександрВолков-е1р1и
      @АлександрВолков-е1р1и 4 роки тому

      Андрей, посмотрите "Закон расположения простых чисел найден". Там графический закон показан. Формального, то есть формульного воплощения, скорее всего не существует.

  • @ЭдуардЛутков
    @ЭдуардЛутков 6 років тому +1

    По крайней мере, теперь понятно как искать простое число. Множество простых чисел равномощно натуральному. Парядокс, но он обьясним. В бесконечности размер становится мнимой величиной.

    • @xClordas
      @xClordas 6 років тому

      не факт, множество простых чисел может оказаться конечным, если это доказать - вот это будет парадокс так парадокс.

    • @АлександрФ-ш4ч
      @АлександрФ-ш4ч 6 років тому +3

      @@xClordas Множество простых чисел бесконечно, что еще Евклид доказал

    • @godj6075
      @godj6075 6 років тому

      Ахаха ,гении математики!

  • @badcatprod
    @badcatprod 6 років тому +4

    Почему мне он напоминает Монти Пайтон? )

  • @Eratosthenes0fCyrene
    @Eratosthenes0fCyrene 6 років тому +4

    Крутая ирония у него всегда.

  • @shotkey610
    @shotkey610 5 років тому

    Способ друга Мэтта более "тяжелый", потому что до него трудно догадаться. Способ самого Мэтта более "трудный", поскольку там больше процедур необходимо сделать, больше труда/времени затрачивается. Перенести 100кг за раз тяжело, перенести же 10 раз по 10кг трудно.

  • @ТариэлИманалиев-б2з
    @ТариэлИманалиев-б2з 6 років тому +1

    Расскажите пожалуйста о производном и интеграле где и для чего применяем

  • @ramza2779
    @ramza2779 6 років тому

    Я тоже установил закономерность.Любое простое число больше 5 в четвертой степени оканчивается единицей.

  • @user-nt3xr4ze9z
    @user-nt3xr4ze9z 5 років тому

    This is a common place. Almost like any odd squared minus 1 is divisible by 8.

  • @ratanas8161
    @ratanas8161 5 років тому

    Ловкость языка и "никакого обмана" как говорят честные демагоги. Гдето после одинадцатой минуты так ловко перепутал что дажэ при повторе неразобрал как получяетса между теми эти и никаких простых. Но вот пришла в голову идея что если чтото подобно сказаному действительно доказано, то можно попробовать линейку скрутить в змейку и посмотреть несоответствует ли оси простым числам, потому что выглядит както закономерно и напрвшываетса идея получить предел дивергенцыи 'золотого сечения' 1.618... Но конешно второй вариант доказательства так и остался мною непонят ибо ненашел куда впихнуть простые после пояснения левоправово равенства двойки тройки шэстерки восмерки и самого понятия кратности, поскольку с одной стороны такое определение выглядит верным, но проблема в том что верным оно выглядит во философском смысле, а не в арифметическом. А при рисовании возможности совпадения с некими осями, спецпростые можно отнести к отрицательным по отношэнию к осям. Пробовал такое проделать с таблицой Менделеева, но неполучилось. Можэт сейчяс повезет... :)) Наперстники так и играют что процэс ускоряетса для затуманивания мерцанием при маневре, так что свое недопонимание могу юридически списать на преднамереную ловкость изпытателя относительно наблюдателей. Редко приходитса призновать что непонял, но это выгоднее чем спорить и рисковать остатса в дураках. Чтоб неоставлять в стороне тройку, допустим что паралельные оси соотносимы, но вот кривизна этих осей к самой функцыи простых чисел довольно спорно поскольку по умолчянию подразумеваетса что оси прямые по отношэнию к наблюдателю, и при том пространство между витками змейки необходимо считать несуществующим, а это тожэ можэт вызвать сериозные возрожэния. Вот такие впечятления от просмотренного. Калкулятором тожэ пользуюсь, ибо нечево ему без дела валятса да энергию жрать... :))
    И еще мое неразумение: можно ли щитать пересекающиеся конуса паралельными в смысле симетрии?

    • @backer01
      @backer01 4 роки тому

      Ну ты и высрал, чел

  • @citronix4654
    @citronix4654 5 місяців тому

    могу доказать, что два и три не простые числа. 2 - делится само на себя и на 2. 3 - делится само на себя и на 3.)))

  • @TheBasilest
    @TheBasilest 5 років тому +1

    Любопытно, жаль не верно обратное? Тогда было бы не сложно находить простые числа.

  • @someothers3077
    @someothers3077 5 років тому +1

    Я готов купить ему пачку бумаги

  • @Joe_Maputo
    @Joe_Maputo Рік тому

    Но это работает только в одну сторону. Не каждое число, которое при возведении в квадрат минус один кратно 24, является простым.

  • @gaidarov615
    @gaidarov615 3 роки тому

    На Олимпиаде по математике за 10 класс была задача доказать данную теорему.

  • @qqwords
    @qqwords 5 років тому +3

    Но будет ли раскрыта наконец тайна числа 1983...

  • @jostar8200
    @jostar8200 4 роки тому

    Меня одного интересует, почему он не говорит, что 1 тоже простое число?

    • @Solipschism
      @Solipschism  4 роки тому +1

      потому что один - не простое.

  • @azatvartanian7448
    @azatvartanian7448 5 місяців тому

    Приводимое, в частности, доказательство, было опубликовано автором в 2023 г. (стр. 279) на английском языке.

  • @annnaz4200
    @annnaz4200 2 роки тому

    можно было перевести нормально... при делении квадрата простого числа на 24 получается остаток 1

  • @ИгорьЛопатин-м8т
    @ИгорьЛопатин-м8т 4 роки тому

    А мне понравилось сделать таблицу квадратов только с простыми числами. При добавлении оси числа сортируются по колличеству множителей...

  • @BENJO1609
    @BENJO1609 5 років тому +1

    (49 × 49 - 1) / 24 = 100,
    но 49 не просте число

    • @ВалерийВеличко-у8ъ
      @ВалерийВеличко-у8ъ 5 років тому

      Все простые подходят под закономерность, но все подходящие под закономерность - простые. 49 - произведение 7 и в данном случае самого на себя. Вот и все объяснение.

    • @BENJO1609
      @BENJO1609 5 років тому

      Якщо під закономірність підходять не тільки прості, то метод ненадійний для перевірки на прості числа.

  • @marafet2216
    @marafet2216 6 років тому +5

    Бумага новая

  • @fujxdryjc
    @fujxdryjc 2 роки тому

    1117 и 1123 это два простых числа и между ними только 1122 которое делится на 6

  • @boost_the_future319
    @boost_the_future319 2 роки тому

    Очень интересно, но ничего не понятно. Особенно тогда, когда постоянно ошибается))) но, Думаю, это не специально 👍

  • @karenguyumjyan3392
    @karenguyumjyan3392 4 роки тому

    Не работает 25 не простое число но оно тоже таким образом можно получить 25*25=625 и 625-1=624 потом 624/24=26
    И не только 25, почти все числа которые заканчиваются на 5 тоже получаются, от других кроме 5 числа 49, 121 и тогдалии

    • @backer01
      @backer01 4 роки тому

      Всё работает, смотри внимательнее

  • @vladislavpozdnyakov3135
    @vladislavpozdnyakov3135 5 років тому +2

    Что я тут делаю, я же юрист...

    • @bodyabodya627
      @bodyabodya627 5 років тому +1

      Vladislav Pozdnyakov слава Ферма спать не даёт, коллега.

  • @АлександрКлец-я3м
    @АлександрКлец-я3м 4 роки тому

    Эмм , понимаю, модуль 8 и модуль 3, все квадраты простых кроме 2 и 3 дают 1 по модулю 3 и 8

  • @mixfix5733
    @mixfix5733 5 років тому +1

    А как на счёт 24^2=24*24+0