A Very Nice Math Olympiad Problem | Can You Solve for x? | Algebra

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 56

  • @tunneloflight
    @tunneloflight Місяць тому +14

    Recognize that 2 is an obvious solution, as is -1. Expanding the equation and moving it all to the LHS, then doing synthetic division with 2 and -1 results in a quadratic. Solving that reveals the final two roots to be -phi and 1/phi. All four check out as correct. x = {-phi, -1, 1/phi, 2}.

    • @christianlopez1148
      @christianlopez1148 Місяць тому +1

      exactly!!

    • @clessalvein876
      @clessalvein876 Місяць тому

      Agreed. Those factoring choices to find 2 and -1 are just contrived otherwise.

    • @victordunord7261
      @victordunord7261 Місяць тому +1

      10:33 -1 est solution évidente
      on factorise le polynôme cubique par x+1 on obtient un polynôme de second degré qui est facilement résoluble …
      et on peut aller dormir tranquillement

    • @dominiquebercot9539
      @dominiquebercot9539 Місяць тому

      @@victordunord7261
      Et x=2 est aussi d’OL évidente, ça simplifie encore le pb!

  • @Русский_Мыслитель
    @Русский_Мыслитель Місяць тому +4

    Отлично! С удовольствием разобрался вместе с Вами. Привет из Москвы! 😊❤❤😊

  • @cyruschang1904
    @cyruschang1904 Місяць тому +5

    (x^2 - 2)^2 = x + 2
    x^4 - 4x^2 - x + 2 = 0
    (x + 1)(x^3 - x^2 - 3x + 2) = 0
    (x + 1)(x - 2)(x^2 + x - 1) = 0
    x = -1, 2, (-1 +/- ✓5)/2

  • @mikeeisler6463
    @mikeeisler6463 Місяць тому +5

    once you have x^3 + 2x^2 - 1, rather sum of cubes rigamarole, do
    x^3 + 2x^2 - 1
    = x^3 + x^2 + x^2 - 1
    = (x+1)(x^2) + (x+1)(x-1)
    = (x+1)(x^2 + x - 1)

  • @sy8146
    @sy8146 Місяць тому +1

    Thank you for explaining. I will show my method.
    Letting, f(x)=(x^2-2)^2, g(x)=x+2, f(2)=g(2)=2 and f(-1)=g(-1)=1. Therefore, f(x)-g(x) is divided by (x-2)(x+1) [=x^2-x-2].
    >
    ∴ x^4 - 4x^2 - x + 2 = (x^2-x-2)(x^2+ax+b) ∴ x^2+ax+b = x^2 + x - 1 From x^2+x-1=0, x=(-1±√5)/2 ∴ x = 2, -1, (-1±√5)/2
    ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
    I guess the test-maker respected the test-takers can calculate or find x=-1,2 at the beginning when he/she made this problem.
    Judging from the left side of the given equation is (・・・)^2, if x has integer solutions, the value of (x^2-2)^2 [=x+2] is 0, 1, 4, 9, ・・・.
    The case of =0 should be rejected because x^2-2 cannot be 0 if x is an integer. And, we can find x=-1 and x=2 easily by trial and error.
    Thus, we can get 2 integer solutions at the beginning without complicated calculation.
    ・・・ Hence, I guess the test-maker made the problem because he/she tried to know the test-takers' can notice the calculation that I typed above.

  • @jorgepinonesjauch8023
    @jorgepinonesjauch8023 Місяць тому +1

    Linda ecuación de 4to grado, resuelta solo con álgebra elemental y un poco de creatividad 😊

  • @raghvendrasingh1289
    @raghvendrasingh1289 Місяць тому +1

    Nice problem
    other solution are
    Method 1
    (x^-2)^2 = x+2
    Let y= x^ 2 - 2
    then y^2 = x+2
    adding these equations
    x^2+x =y^2+y
    (x-y)(x+y+1) = 0
    (x-x^2+2)(x+x^2-2+1) = 0
    (x^2-x-2)(x^2+x-1) = 0
    (x+1) (x-2) (x^2+x-1)=0
    Method 2
    subtracting x^2 both sides and factorising LHS
    (x^2-2+x ) ( x^2-2-x) = x+2-x^2
    transposing RHS to LHS and taking common
    (x^2-x-2)(x^2+x-1) = 0
    Method 3
    x4-4x^2-x+2 = 0
    suppose that factorisation of expression is
    (x^2+px+a )(x^2-px+b) then
    a+b-p^2= - 4
    P (b-a ) = - 1
    ab = 2
    Now (a + b)^2 - (a - b)^2 = 4ab hence
    (P^2-4)^2 -1/p^2 = 8 let t = p^2
    t^2-8t+16-1/t = 8
    t^3-8t ^2+16t-9 = 0
    t = 1 because sum of coefficients is zero
    hence p = 1
    a+b = -3 , a - b = 1
    hence a = -1 , b = -2
    (x^2+x-1)(x^2-x-2) = 0
    Method 4
    let a = 2 then
    x^4+a^2-2ax^2-x-a = 0
    a^2 - (2x^2+1)a + (x^4-x)= 0
    Discriminant is
    4x^4+4x^2+1-4x^4+4x = (2x+1)^2
    a =(2x^2+1+2x+1)/2 , (2x^2+1-2x-1)/2
    hence 2 = x^2+x+1 and x^2-x
    x^2+x-1 =0 , x^2-x-2 = 0

  •  Місяць тому +1

    Simpler method: Once you get the equation at 2:42 you can use the Rational Roots Theorem and see immediately that the only possible rational roots are 1,-1,2 or -2. Testing these options and finding x_1 and x_2 only takes a few seconds. Then you can divide by (x+1)(x-2) and get the second degree equation that gives you x_3 and x_4.

  • @codplayernn532
    @codplayernn532 Місяць тому

    Simple, use 4th degree equation formula. Our professor made US derive and learn It, in case It would be helpful in future.

  • @michallesz2
    @michallesz2 Місяць тому

    x^2-2=a => a^2 = x+2 => 2*2=2+2 => a=2 and x=2

  • @rezasheibani8859
    @rezasheibani8859 21 день тому

    It takes a long time you solve a problem

  • @key_board_x
    @key_board_x Місяць тому +1

    (x² - 2)² = x + 2
    x⁴ - 4x² + 4 = x + 2
    x⁴ - 4x² + 4 - x - 2 = 0
    x⁴ - 4x² - x + 2 = 0 ← it would be interesting to have 2 squares on the left side (because power 4 and power 2)
    Let's rewrite the equation by introducing a variable "λ" which, if carefully chosen, will produce 2 squares on the left side
    Let's tinker a bit with x⁴ as the beginning of a square: x⁴ = (x² + λ)² - 2λx² - λ²
    x⁴ - 4x² - x + 2 = 0 → where: x⁴ = (x² + λ)² - 2λx² - λ²
    (x² + λ)² - 2λx² - λ² - 4x² - x + 2 = 0
    (x² + λ)² - [2λx² + λ² + 4x² + x - 2] = 0 → let"s try to get a second member as a square
    (x² + λ)² - [x².(2λ + 4) + x + (λ² - 2)] = 0 → a square into […] means that Δ = 0 → let"s calculate Δ
    Δ = (1)² - 4.[(2λ + 4).(λ² - 2)] → then, Δ = 0
    (1)² - 4.[(2λ + 4).(λ² - 2)] = 0
    4.[(2λ + 4).(λ² - 2)] = 1
    8.[(λ + 2).(λ² - 2)] = 1
    (λ + 2).(λ² - 2) = 1/8
    λ³ - 2λ + 2λ² - 4 - (1/8) = 0
    λ³ + 2λ² - 2λ - (33/8) = 0
    λ = - 3/2
    Restart
    (x² + λ)² - [x².(2λ + 4) + x + (λ² - 2)] = 0 → when λ = - 3/2, a square will appear
    [x² - (3/2)]² - [x².(2.{- 3/2} + 4) + x + ({- 3/2}² - 2)] = 0
    [x² - (3/2)]² - [x².(- 3 + 4) + x + ({9/4} - 2)] = 0
    [x² - (3/2)]² - [x² + x + (1/4)] = 0 ← we can see a square
    [x² - (3/2)]² - [x + (1/2)]² = 0 → recall: a² - b² = (a + b).(a - b)
    { [x² - (3/2)] + [x + (1/2)] }.{ [x² - (3/2)] - [x + (1/2)] } = 0
    [x² - (3/2) + x + (1/2)].[x² - (3/2) - x - (1/2)] = 0
    [x² + x - (2/2)].[x² - x - (4/2)] = 0
    (x² + x - 1).(x² - x - 2) = 0
    First case: (x² + x - 1) = 0
    x² + x - 1 = 0
    Δ = (1)² - (4 * - 1) = 5
    x = (- 1 ± √5)/2
    Second case: (x² - x - 2) = 0
    x² - x - 2 = 0
    Δ = (- 1)² - (4 * - 2) = 9
    x = (1 ± 3)/2
    Solution = { (- 1 - √5)/2 ; - 1 ; (- 1 + √5)/2 ; 2 }

    • @SpencersAcademy
      @SpencersAcademy  Місяць тому

      Excellent job well done 👏

    • @clmkc5393
      @clmkc5393 Місяць тому

      Appreciate the detail but incredibly long!

    • @key_board_x
      @key_board_x Місяць тому

      @@clmkc5393
      it's precisely because it takes so long that I'm passing on this solution.

  • @franciscook5819
    @franciscook5819 Місяць тому

    Before watching the video (or reading other comments) ...
    (x² - 2)² = x + 2
    Expand with only 0 on the rhs
    x⁴ - 4x² - x + 2 = 0
    by inspection x = 2 is a solution (sub in to lhs and rhs) so (x - 2) is a factor.
    do the long division ( by (x - 2) )
    x⁴ - 4x² - x + 2 = (x - 2)(x³ + 2x² - 1)
    by inspection x = - 1 is a solution so (x + 1) is a factor
    x⁴ - 4x² - x + 2 = (x - 2)(x + 1)(x² + x - 1)
    Solutions are the above two
    x = 2, x = - 1
    and (using the quadratic formula on the last bracket)
    x = -(√5+1)/2, x = (√5-1)/2
    NB I see others have done the same.

  • @albertowusu4750
    @albertowusu4750 Місяць тому

    It’s super 👌🏿

  • @touratiaziz5059
    @touratiaziz5059 Місяць тому

    Excellent thank you

  • @prasadrasikawidanagamachch3932
    @prasadrasikawidanagamachch3932 15 днів тому

    X=2 or (-1)

  • @arekkrolak6320
    @arekkrolak6320 Місяць тому +2

    This is quintic with two trivial roots. Kindergarden stuff

  • @AbdulrahimraisiBazneshasteh
    @AbdulrahimraisiBazneshasteh 20 днів тому

    You write a lot, choose the font with the largest size. thank you

  • @amudangopal
    @amudangopal Місяць тому

    Sir. U show a+b formula n use a-b formula

  • @哈哈-h2e
    @哈哈-h2e Місяць тому

    (x^2-2)^2 -4 = x+2 -4
    x^2 (x^2- 4) =x-2
    (x-2)(x^3+2x^2- 1)=0
    (x-2)(x+1)(x^2 +x-1)=0
    x=2,-1,(-1+-sqrt5)/2

  • @Christopher-e7o
    @Christopher-e7o Місяць тому

    X,2x+5=8")

  • @davidshen5916
    @davidshen5916 Місяць тому

    Y=X^2-2, Y^2=X+2, Y+Y^2=X^2+X, (X-Y)(X+Y+1)=0,

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Місяць тому

    (x^4 ➖ 4)={x^0+x0 ➖ }=x^1(x ➖ 1x+1).{x+x ➖ }+{2+2 ➖ }={x^2+4}=4x^2 2^2x^2 1^1x^2 1x^2 (x ➖ 2x+1).

  • @dan-florinchereches4892
    @dan-florinchereches4892 Місяць тому

    I think you can try some values and notice x=2 is root of original equation.
    Then you are left with x^3+2x^2-1=0 which has root -1 which you can factor out, considering polynomial p(x)=x^3+2x^2-1 has integer roots which are divisors of free term 1

  • @AbdulrahimraisiBazneshasteh
    @AbdulrahimraisiBazneshasteh 20 днів тому

    Write with biggest fonts

  • @yanssala2214
    @yanssala2214 Місяць тому

    X = 3....demore menos de 5 segundos

    • @ServoDoFJ
      @ServoDoFJ Місяць тому

      Nah

    • @yanssala2214
      @yanssala2214 Місяць тому

      @@ServoDoFJ 😀😀😀😀😃

    • @ServoDoFJ
      @ServoDoFJ Місяць тому

      @@yanssala2214 Melhor do que fazer toneladas de equações

  • @richardl6751
    @richardl6751 Місяць тому

    Once again, the Golden Ratio shows up.

    • @Ctrl_Alt_Sup
      @Ctrl_Alt_Sup Місяць тому

      When we know the golden ratio φ=(1+√5)/2≈1.618, by plotting the graph of the function f(x)=x⁴−4x²−x+2, in addition to the solutions x=-1 and x=2, we easily recognize the 2 other solutions x≈(-1.618)≈(-φ) and x≈(0.618)≈(φ−1) or x=-(1+√5)/2 and x=(1+√5)/2−1

    • @SpencersAcademy
      @SpencersAcademy  Місяць тому

      Nice one 👍