- 137
- 806 873
Spencer's Academy
Приєднався 6 бер 2024
This channel is devoted to equipping you with everything you need to master mathematics, thermodynamics, fluid mechanics, and solid mechanics. Helping you to understand simple concepts and logic you need to solve any question.
It's most especially built for people who could not afford quality education and for teachers who want to advance in knowledge.
We request you support, like, and share to reach out to those who need help.
You can make request on topic and write your doubts in the comment section. We will work effortlessly to get you what you need.
Please subscribe to this channel.
It's most especially built for people who could not afford quality education and for teachers who want to advance in knowledge.
We request you support, like, and share to reach out to those who need help.
You can make request on topic and write your doubts in the comment section. We will work effortlessly to get you what you need.
Please subscribe to this channel.
A Very Nice Math Olympiad Problem | Solve for x ana y? | Algebra Equation
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Algebra problem using a simple trick.
Please feel free to share your ideas in the comment section.
And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
Please feel free to share your ideas in the comment section.
And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
Переглядів: 405
Відео
A Very Nice Math Olympiad Problem | Solve for x? | Algebra | Radical equation
Переглядів 1,9 тис.7 годин тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Algebra problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Solve for the values of x? | Algebra Equation
Переглядів 2,5 тис.9 годин тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Algebra problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Solve for x? | Algebra Equation
Переглядів 8 тис.12 годин тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Algebra problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Solve for k | Algebra
Переглядів 67917 годин тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Solve for x | Algebra radical equation
Переглядів 2,7 тис.19 годин тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Exponential problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Can You Solve for x? | Algebra Equation
Переглядів 2,1 тис.21 годину тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Algebra problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Can You Solve for x? | Algebra | Radical equation
Переглядів 3,1 тис.День тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Algebra problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Solve for x | Algebra | Exponential equation
Переглядів 6 тис.День тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Exponential problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Solve for all values of x | Algebra
Переглядів 3,1 тис.День тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Algebra problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Harvard University Question | Solve the radicals | Algebra
Переглядів 2,6 тис.14 днів тому
In this video, I'll be showing you step by step on how to solve this Harvard University Question using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Solve for the values of k | Algebra
Переглядів 2,2 тис.14 днів тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Can You Solve for x? | Algebra | Exponential
Переглядів 1,3 тис.14 днів тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Algebra problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Solve for x | Algebra | Quintic Polynomial
Переглядів 1,6 тис.14 днів тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Algebra Problem
Переглядів 2,5 тис.14 днів тому
In this video, I'll be showing you step by step on how to solve this Olympiad Maths Exponential problem using a simple trick. Please feel free to share your ideas in the comment section. And if you are new here and you enjoy my content, please hit the like button and subscribe to my channel. Don't forget to hit the bell icon as well so you don't miss on my upcoming videos.
A Very Nice Math Olympiad Problem | Solve for All Values of x? | Algebra
Переглядів 3,5 тис.21 день тому
A Very Nice Math Olympiad Problem | Solve for All Values of x? | Algebra
A Very Nice Math Olympiad Problem | Solve for x and y | Algebra
Переглядів 1,6 тис.21 день тому
A Very Nice Math Olympiad Problem | Solve for x and y | Algebra
Harvard University Admission Question | Solve For Sqaure root of Iota? | Algeria
Переглядів 88521 день тому
Harvard University Admission Question | Solve For Sqaure root of Iota? | Algeria
A Very Nice Math Olympiad Problem | Can You Solve for a and b? | Algebra
Переглядів 1,6 тис.21 день тому
A Very Nice Math Olympiad Problem | Can You Solve for a and b? | Algebra
A Very Nice Math Olympiad Problem | Solve for the values of x and y | Algebra
Переглядів 1,4 тис.21 день тому
A Very Nice Math Olympiad Problem | Solve for the values of x and y | Algebra
Harvard University Admission Question | Solve For x? | Algeria
Переглядів 2,7 тис.28 днів тому
Harvard University Admission Question | Solve For x? | Algeria
A Very Nice Math Olympiad Problem | Solve for x and y | Algebra
Переглядів 1,7 тис.28 днів тому
A Very Nice Math Olympiad Problem | Solve for x and y | Algebra
A Very Nice Math Olympiad Problem | Solve for (a,b,c) | Algebra
Переглядів 1,9 тис.Місяць тому
A Very Nice Math Olympiad Problem | Solve for (a,b,c) | Algebra
A Very Nice Math Olympiad Problem | Solve for n | Algebra
Переглядів 2,8 тис.Місяць тому
A Very Nice Math Olympiad Problem | Solve for n | Algebra
A Very Nice Math Olympiad Problem | Solve for x | Algebra
Переглядів 16 тис.Місяць тому
A Very Nice Math Olympiad Problem | Solve for x | Algebra
A Very Nice Math Olympiad Problem | Can You Solve for x | Exponential | Algebra
Переглядів 1,2 тис.Місяць тому
A Very Nice Math Olympiad Problem | Can You Solve for x | Exponential | Algebra
A Very Nice Math Olympiad Problem | Solve for real value of x for which x^30+x^20=80
Переглядів 2,6 тис.Місяць тому
A Very Nice Math Olympiad Problem | Solve for real value of x for which x^30 x^20=80
A Very Nice Math Olympiad Problem | Solve for a+b+c=?
Переглядів 1,3 тис.Місяць тому
A Very Nice Math Olympiad Problem | Solve for a b c=?
A Very Nice Math Olympiad Problem | Solve for a, b and c | Algebra
Переглядів 16 тис.Місяць тому
A Very Nice Math Olympiad Problem | Solve for a, b and c | Algebra
A Very Nice Math Olympiad Problem | Solve for a and b | Algebra
Переглядів 3,6 тис.Місяць тому
A Very Nice Math Olympiad Problem | Solve for a and b | Algebra
Check 61+y^3 for y=1, 2, 3, 4, bingo! 5^3-4^3 = 61, hence (x,y)=(5,4) or (-4,-5). This is not an IMO-class problem.
Step one and step two can be done in one go you don't have to do every tiny operation
(7^x)+[7^(2x)]+7^(3x)=14 (7^x)+(7^x)²+(7^x)³=2+4+8 =2+2²+2³ As the structure of bot side is similar 7^x=2 --> x=⁷log(2) where the logarithm is 7-based. For other possibile roots, knowing that [(7^x)-2] is a factor, we can factor the equation as (7^x)³+(7^x)²+(7^x)-14=0 [(7^x)-2][(7^x)²+3(7^x)+7]=0 (7x^x)²+3(7^x)+7=0 is a quadratic equation which is positive definite. The roots are imaginary: 7^x=½[-3±isqrt(19)] Have to take logarithm to find x, which can't be done.
How do we know a quartic equation without a cubic can be factorised as (x²+x+p)(x²-x+q) and does it still hold true even when there is a cubic? Also is there any reasoning why the coefficient of x equals 1 anyway? 😄
Notice that in the video, I only considered the positive factors of 61. You can try the negative factors of 61 and show us what you've got. ❤
First❤❤❤❤
Easier with the polar writing. Set i = (1,pi/2 + 2k.pi) with k = 0 or 1. Then for k = 0 ==> sqrt(i) = (1,pi/4) = (sqrt(2)/2).(1 + i) for k = 1 ==> sqrt(i) = (1,pi/4 + pi) = (-sqrt(2)/2).(1 + i)
(√a+√-a)^2=32^2;=>a+2(√a√-a)-a= 1024;=>2(√a√-a)= 1024;=> √(-a^2)= 512;=> a=±512i
Hoc est x= log 2/ log7, Eheu! Responsi. 😂😅😊😢🎉😂😅😊😮😢
At about 4:30 the lecturer is cheating: The tentative factorization over the integers must take the form (x^2+rx+p)(x^2-rx+q) There is no stated prior reason why r should equal 1 (except by already knowing the result)! With r unknown a completely different solution strategy must be adopted, based on all possible factorizations of the constant term.
Introduce y=√(x+5), and rewrite equation as x^2 - y = 5 y^2 - x = 5 Subtract to find x^2 -y^2+x-y=(x-y)(x+y+1)=0. Case y=x => (after squaring) (x-1/2)^2 = 5+1/4 = 21/4 x=(1+√21)/2 is a valid solution, x=(1-√21)/2 is not a valid expression for y as a square root. Case y=-(x+1) => (after squaring) (x+1/2)^2 = 5-1+1/4 = 17/4 x=-(1+√17)/2 is a valid solution. x=(-1+√17)/2 does not lead to a valid expression for y as a square root.
Let a=±bi where b is real. Then √2√b/2=16. Thus, √b=16√2, b=2*16^2=512, and a=±512i
为什么能展开成这两个二次方程的乘积 我随便写了个方程,就无法这样做 x^4 -22x^2+3x+8=0
(x-3)^4=16 x=5 5 - 3 = 2 2^4 =16
What is the value of “log of a complex number” ? Are there any definition of it value?
The complex logarithm Ln can be defined as follows : set z = (|z|, arg(z)) (polar coordinates) ==> Ln(z) = ln(|z|) + i. arg(z). This definition is a function (main determination), only if arg(z) € [0, 2.pi[. (ln = real logarithm)
much simpler in polar coordinates. x⁶≉2⁶ exp(i2nπ) x=2exp(iπ2n/6) =2exp(iθ) θ=0, π/3, 2π/3, π, 4π/3, 5π/3. note exp(iθ)= cosθ +isinθ so solutions are x=±2, 2(cos60±isin60), 2( cos120±isin120) x=±2, 1±i√3 , −1±i√3 it helps to draw the solutions on the Argand diagram. The solutions are six equally spaced points on a circle radius 2
I tried x^4-14x+5x+30=0, using your method, but the system of equations was q-p=5, q+p=-13 and qp=30. Two of the solutions involved quadratics with “c” that contained a square root for a coefficient.
I suspect you could try to decompose your polynomial as a product of two factors (x²+a*x+p)*(x²-a*x+q) and thus solve a system of 3 equations with 3 unknowns.
we will use Descartes' method for solving biquadratic equation Let x^4 - 14 x^2 +5x +30 = (x^2 +ax+p)(x^2-ax+q) p q = 30 a(q-p) = 5 p+q - a^2 = - 14 now (q+p)^2 - (q - p)^2 = 4qp hence (a^2- 14)^2 - 25/a^2 = 120 we put t = a^2 t^2 - 28 t+196-25/t-120= 0 t^3 - 28 t^2+76 t- 25 = 0 t = a^2 hence we will use RRT with t = 1 , 25 t = 25 satisfies the equation hence a = 5 q+p = 11 , q - p = 1 q = 6 , p = 5 (x^2+5x+5)(x^2 - 5x+6) however in this case we can factorise easily by RRT by taking x = 2 , 3
(X^2 - Y^2) = (X+Y)(X-Y)=24; 24=12x2, the sum of X+Y and X-Y is 2X = 14 and X= 7 and Y= 5. This is the answer in natural numbers
It’s tricky, but not as hard as partial fractions.
(x^2)^2 ➖(5)^2={x^4 ➖ 25}=21 3^7 3^7^1 3^1^1 3^1 (x ➖ 3x+1). {x+x ➖ }+{5+5 ➖ }={x^2+10}=10x^2 5^5x^2 2^3^2^3x^2 1^1^1^3x^2 3x^2 (x ➖ 3x+2).
(x⁸ - x²)/(x⁴ - x²) = 9 , (x⁴ - x²) ≠ 0 -> x ≠ 0, ±1 (x⁶ - 1)/(x² - 1) = 9 x⁴ + x² + 1 = 9 x⁴ + x² - 8 = 0 x² = (-1 ± √33)/2 = 2*(-1 ± √33)/4 x = ±√2*√(√33-1)/2, ±i*√2*√(√33+1)/2
La equis subuno en positiva mayor que cero la que es negativa es la equis subidos
One obvious solution is x = ln(2)/ln(7).
let u=7^x , u^3+u^2+u-14=0 , (u-2)(u^2+3u+7)=0 , u=2 , 7^x=2 , x=log2/log7 , 1 -2 test , 7^x+7^2x+7^3x=2+4+8 , --> 14 , OK , 3 -6 /u^2+3u+7=0 , u=(-3+/-V(9-28))/2 , u=(-3+/-i*V(19))/2/ , 7 -14
Excellent delivery! 👏
@@SpencersAcademy Thanks!
@@SpencersAcademy Thanks!
{14+28x^2+21x^3}=63x^4 14 2^14x^2+3^7x^3 2^7x^2+2^3^7x^3+ 1^1+1^1x^1+ 1^3^4x^1 3^2^2 x^1 3^1^2x^1 3^2x (x ➖ 3x+2).
7ˣ = 2 (2 + 4 + 8 = 14) x = log₇2
X=log2/ log7 (log 2 with base 7)
For logs, you would save steps if you use the log base that cancels out leaving with whatever is in the exponent. In this case, the extra steps would not have been necessary had you simply introduced the log to base 7 on both sides of the equation.
Good idea 👍
7^x+7^2x+7^3x=14 (7^x)³+(7^x)²+7^x-14=0 Let y=7^x y³+y²+y-14=0 y³-8+y²-4+y-2=0 (y-2)(y²+2y+4)+(y-2)(y+2)+1(y-2)=0 (y-2)(y²+3y+7)=0 y²+3y+7=0 ∆=b²-4ac ∆=3²-4•1•7 ∆=-19<0 reject y-2=0 y=2 7^x=2 x=log_7(2) ❤
Excellent approach! 👏
I mean what is wrong if we took matual 7 to the power x and its 1+1²+1³=14 It's not working but i want to know why can you explain plz
Thanks for the video. You are touching on a very tricky topic. The definition of the log of a complex number leads to some contradictions which need exclusion and specific treatment. To say it differently I would not touch this animal :-). By the way I think that dividing the polynomial by t-2 (knowing that 2 is "evident" solution) and solving the quadratic equation is a shorter path. Good job anyway.
Thank you for the acknowledgement 😊 That's a good approach 👍
Good work my fellow Mathematician ❤ keep up with the content I have subscribed
Thank you! 😊. You're welcome aboard.
@SpencersAcademy happy for you
❤❤❤ Спасибо, что развлекли на полчаса. Молодость вспомнил (мне уже 67 лет). Все зависит от области допустимых значений, (как меня учили когда-то в школе), которая здесь, увы, не оговорена. Без этого игра с числами не имеет смысла. Поэтому область этих самых допустимых значений установил себе сам: 1.Если это просто школьный прикол, то ответ простой: "-1". Для такого "решения" понадобилось ~30сек На областной олимпиаде по математике была задача о рыбах, где ответ был такой же, только числа в ответе отличались 2.Если это реальная задача с областью допустимых значений, где x больше 0, то: x ~ 1,6640625, если преобразовать это уравнение так: (x•x - 2)(x•x + 2) = x + 2; x•x•x•x + 2•x•x - 2•x•x - 2•2 = x + 2; x•x•x•x - 4 = х + 2; x•x•x•x - x = 4 + 2; x (x•x•x - 1) = 6 (эти преобразования на уровне средней школы тогдашнего моего выпуска ). Комп не работает, есть в доме только бухгалтерский CASIO (DM-1200) с 12-тью цифрами на экране. Мое наследство от умершей от COVID жены. Я чудом тогда выжил. Но это так, к слову... Имеем только этот арифмометр и то "преобразование", на котором проще его вычислять (в практической области допустимых значений, где x больше нуля), т.е. : x(x•x•x - 1) = 6 При x =1: 0 не равно 6; При x = 2: 30 не равно 6; Принимаем значение x, равное половине этого интервала, т.е. : x = 1,5 , при котором 3,5625 не равно 6; Принимаем значение x, равное половине этого интервала, т.е. "+", например, к его нижнему значению, где x = 1,75 , при котором тоже 7,62890625 не равно правой части уравнения, т.е. 6; Принимаем значение x, равное еще половине интервала, но уже на понижение, где х = 1,625 , при котором 5,34790039062 не равно 6; и т.д. , половиня интервалы куда надо. Вот так я и получил на простом бухгалтерском арифмометре x = 1,6640625 когда уже было: 6,00387448441 которое было все еще больше тех 6. Можно было бы это продолжать и далее, пока CASIO не выдал бы 6,000...000 в силу своих возможностей, "округлив" очередной результат этих вот вычислений, т.е. как и заложено было в его программе (возможностях его) изначально его творцами. Кстати: допустимая погрешность вычислений - это совсем уж отдельная тема!!! Эти все подробности излагал не для Вас, взрослые, а для школьников: а вдруг математика кому-то из них понравится??? P.S. А Вам, для прикола, вот эта школьная задачка, из тех лет: Три товарища пришли в ресторан "гульнуть". Каждый дал официанту по 10-ке. Уходя, попросили рассчитаться с ними. Тот, зная что они "гульнули" на 25-ть, украл с этой суммы себе 3-и и сообщил им, что "нагуляли" они по 9-ть с каждого, вернув каждому из них по 1-му. Т.Е.: по факту они заплатили 9 х 3 = 27, а 3-и он себе прикарманил. 27 (9х3) они оплатили по факту + 3 (он себе "прикарманил") = 29!!! Куда делся 1 рубль, доллар или евро из тех 30-ти ??? С уважением к Вам, Василий
x^2=t t^4-t=9(t^2-t) t^4-9t^2+8t=0 t^3-9t+8=0 (t-1)(t^2+t-8)=0 t=1(no),t^2+t-8=0
Close, but no cigar.
This is a very simple math problem and not a Math Olympiad Problem.
I did this in my head in less than a minute, using the obvious method illustrated by @key_board_x below. I don't understand the point of this video.
Much better to change variable and solve, let Z=x-5 and solve. You obtain a linear equation of square root of Z.
Bro k⁶=64 =⁶√k⁶=⁶√64 =K=2
Squaring when solving, or indeed cubing etc, can introduce fallacious solutions. It’s vital to point this out before starting, very clearly, that all solutions should be checked. An explanation why this occurs would be useful to enquiring minds. Before starting, it’s often a good idea to sketch the functions graphically.
Cube root of 4/9? If you want a numeric value beyond that, use a calculator.
can’t see the wood for the trees. (2/3)^(2/3)= ((2/3)^2]^(1/3) = (4/9)^(1/3) rationalise the denominator by multiplying top and bottom by 3^(1/3) (12/27)^(1/3) =cbrt(12)/3
For the problem given, without conditions for k, which in theory is a constant, variables use w,x,y,z, k=-1,3 If you require complex solutions, you should state this in the initial conditions. Then a simple application of (cosθ+isinθ)^n=cosnθ+isinnθ, gives the necessary solutions. 5 min would be lengthy.
Навіщо так складно? 🤔 Двічі підносити до квадрату, щоб потім відхиляти лишній корінь рівняння; ділити на 2, щоб потім множити на 4; виносити за дужки 4, щоб скоротити дріб на 2 і лишитися з виразом із двійкою за дужками? 🤷🏻♂️
2(a²+b²)=(a+b)²+(a-b)²=62 So, X= 2 Easy
Я тоже так решила
More simple: (x/2)^6=3^6, (x*1/2)^6=(1/2)^6 * (x)^6 (x)^6=[3^6/(1/2)^6] (x)^6=[3^6 * 2^6]= (3*2)^6 x1,2=+-6.
I Haven a different solution. Can You check plecase if my solution is corect? 15=16-1, 15=4^2-4^0, 4^(x-2)=15 =» 4^x/4^2=4^2-4^0 » (2^x)^2=240 (2^x)=4✓15 x=log(4✓15), base 2 of log.
The hell is this video... delete it please
Educate us by explaining the reasoning behind multiplying the numerator and denominator by the nth root of a to the n-1, please.
The author created a lot of unnecessary entities. Everything is solved much easier if the variables and constants are immediately separated.
yes
Now I will make a mountain out of a molehill
Simplify by X^2, then by x^2-1 : ok, but you have immediately précise, thé solution (s) MUST bé différent from , respectively : 0, +1, -1 (even if it IS quasi évident....)