A Very Nice Math Olympiad Problem | Solve for x | Algebra

Поділитися
Вставка
  • Опубліковано 14 лис 2024

КОМЕНТАРІ • 20

  • @MrPandaJJ
    @MrPandaJJ Місяць тому +5

    At the beginning of the 2nd page (~5:18), you know
    x^4 - 4x^3 - 6x^2 - 4x + 1 = 0
    Observe that flipping the sign of 6x^2 gives you (1-x)^4,
    so we can in fact rewrite the equation as
    (x^4 - 4x^3 + 6x^2 - 4x + 1) - 12x^2 = 0
    i.e.
    (1-x)^4 - 12x^2 = 0
    This is the difference of two squares,
    factorize it and you would get two quadratic equations, which give you the 4 solutions of x.
    It would save you some times compare with the t substitution.

    • @dan-florinchereches4892
      @dan-florinchereches4892 Місяць тому +1

      This is the solution I saw but later I also noticed this is a palindromic equation so dividing by x^2 can also work for it

    • @SpencersAcademy
      @SpencersAcademy  Місяць тому +1

      Great job 👏

    • @師太滅絕
      @師太滅絕 Місяць тому

      (continue) [(1-x)^2 - sqrt(12x)][(1-x)^2 + sqrt(12x)] = 0
      case A (1-x)^2 - sqrt(12x) = 0
      case B(1-x)^2 + sqrt(12x) = 0

    • @MrPandaJJ
      @MrPandaJJ Місяць тому +1

      @@師太滅絕
      not sqrt(12x)
      but sqrt(12)x
      therefore much easier than you think

  • @ernestdecsi5913
    @ernestdecsi5913 Місяць тому +1

    A very nice solution indeed.

  • @MrPandaJJ
    @MrPandaJJ Місяць тому +5

    At the end you say all 4 solutions are real not complex, however it is not true.
    x_3 and x_4 are complex, as [3 - 2*sqrt(3)] is, in fact, negative.

  • @gintautasruksenas6129
    @gintautasruksenas6129 20 днів тому +1

    Ačiū!

    • @SpencersAcademy
      @SpencersAcademy  20 днів тому

      My pleasure, sir 🙏
      Thanks for the Super Thanks 😊
      I'm indeed grateful 🙏

  • @JoseManuel-zn8lm
    @JoseManuel-zn8lm 28 днів тому

    Hola
    Las soluciones son todas válidas al hacer la comprobación?
    Gracias

  • @jimwinchester339
    @jimwinchester339 Місяць тому

    Why not begin by cancelling out one of the powers of (x + 1) in the denominator with the numerator, then flipping over both sides of the equation, giving (x+1)^ 3 = 2? Surely that would be a lot simpler.

  • @giuseppemalaguti435
    @giuseppemalaguti435 Місяць тому

    Risolvo la quartica..2+2x^4=1+6x+4x^2+6x^3+x^4..dopo i calcoli risulta (x^2-3x+1)^2-15x^2=0..poi è semplice .

  • @jeanluchenry2152
    @jeanluchenry2152 Місяць тому +5

    Pour x3,x4, c'est 2 nombres complexes car 3-2racine3 est négatif

  • @key_board_x
    @key_board_x Місяць тому

    (1 + x⁴)/(1 + x)⁴ = 1/2
    2.(1 + x⁴) = (1 + x)⁴
    2 + 2x⁴ = (1 + x)².(1 + x)²
    2 + 2x⁴ = (1 + 2x + x²).(1 + 2x + x²)
    2 + 2x⁴ = 1 + 2x + x² + 2x + 4x² + 2x³ + x² + 2x³ + x⁴
    x⁴ - 4x³ - 6x² - 4x + 1 = 0 → the aim, if we are to continue effectively, is to eliminate terms to the 3rd power
    x⁴ - 4x³ - 6x² - 4x + 1 = 0 → let: x = z - (b/4a) → where:
    b is the coefficient for x³, in our case: - 4
    a is the coefficient for x⁴, in our case: 1
    x⁴ - 4x³ - 6x² - 4x + 1 = 0 → let: x = z - (- 4/4) → x = z + 1
    (z + 1)⁴ - 4.(z + 1)³ - 6.(z + 1)² - 4.(z + 1) + 1 = 0
    (z + 1)².(z + 1)² - 4.(z + 1)².(z + 1) - 6.(z² + 2z + 1) - 4z - 4 + 1 = 0
    (z² + 2z + 1).(z² + 2z + 1) - 4.(z² + 2z + 1).(z + 1) - 6z² - 12z - 6 - 4z - 4 + 1 = 0
    (z⁴ + 2z³ + z² + 2z³ + 4z² + 2z + z² + 2z + 1) - 4.(z³ + z² + 2z² + 2z + z + 1) - 6z² - 12z - 6 - 4z - 4 + 1 = 0
    (z⁴ + 4z³ + 6z² + 4z + 1) - 4.(z³ + 3z² + 3z + 1) - 6z² - 16z - 9 = 0
    z⁴ + 4z³ + 6z² + 4z + 1 - 4z³ - 12z² - 12z - 4 - 6z² - 16z - 9 = 0
    z⁴ - 12z² - 24z - 12 = 0
    z⁴ - (12z² + 24z + 12) = 0
    z⁴ - 12.(z² + 2z + 1) = 0
    z⁴ - 12.(z + 1)² = 0
    z⁴ - [4.(z + 1)² * 3] = 0
    z⁴ - [2².(z + 1)² * (√3)²] = 0
    (z²)² - [2.(z + 1).√3]² = 0 → recall: a² - b² = (a + b).(a - b)
    [z² + 2.(z + 1).√3].[z² - 2.(z + 1).√3] = 0
    First case: [z² + 2.(z + 1).√3] = 0
    z² + 2.(z + 1).√3 = 0
    z² + 2z√3 + 2√3 = 0
    Δ = (2√3)² - (4 * 2√3) = 12 - 8√3 ← it's negative → complex number
    Δ = 12 - 8√3
    Δ = - (8√3 - 12)
    Δ = i².(8√3 - 12)
    Δ = 4i².(2√3 - 3)
    z = [- 2√3 ± 2i√(2√3 - 3)]/2
    z = - √3 ± i√(2√3 - 3)
    Second case: [z² - 2.(z + 1).√3] = 0
    z² - 2.(z + 1).√3 = 0
    z² - 2z√3 - 2√3 = 0
    Δ = (- 2√3)² - (4 * - 2√3) = 12 + 8√3 = 4.(3 + 2√3)
    z = [2√3 ± 2√(3 + 2√3)]/2
    z = √3 ± √(3 + 2√3)
    Recall: x = z + 1
    When: z = - √3 ± i√(2√3 - 3)
    → x = 1 - √3 ± i√(2√3 - 3)
    When: z = √3 ± √(3 + 2√3)
    → x = 1 + √3 ± √(3 + 2√3)

  • @souzasilva5471
    @souzasilva5471 Місяць тому

    3-2V3 < 0 Logo sqrt(3-2sqrt(3) i

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Місяць тому

    {1+1 ➖ }+{x^4+x^4 ➖ }/4x^4={2+x^8}/4x^4=2x^8/4x^4 2x^2^3/2^2x^2^2 1x^1^1^1/1^1x^1^2 x^1^2 (x ➖ 2x+1).

  • @Lemda_gtr
    @Lemda_gtr Місяць тому

    👍🏻🫡 waw great

  • @milencenov6421
    @milencenov6421 Місяць тому

    4 real solutions ??? BS !!!
    Note that √(3 - 2√3) is NOT real, because 3 - 2√3 is less than 0.
    Also note that (x - 1)^4 expands very similarly to (x + 1)^4. All even powers are the same and the odd powers of x have minuses.
    After you cross multiplied and rearranged, you could have noticed that:
    (x - 1)^4 = 12 * x^2
    Thus:
    (x - 1)^2 = |x * 2√3|
    (you may also write plus minus and normal brackets instead of the modulus)
    Now you have the same 2 cases you arrived at.
    x^2 - 2x + 1 = -x * 2√3
    x^2 - 2(1 - √3)x + 1 = 0
    Or
    x^2 - 2x + 1 = x * 2√3
    x^2 - 2(1 + √3)x + 1 = 0
    Note that when B is equal to -2(1 - √3), the discriminant is negative, because B^2 < 4AC.