A Very Nice Math Olympiad Problem | Solve for x? | Algebra Equation

Поділитися
Вставка
  • Опубліковано 24 лис 2024

КОМЕНТАРІ • 4

  • @dudasslobodan8901
    @dudasslobodan8901 День тому +3

    X=+-√11i
    X=+-✓11√(-1)
    ,√(-1)=i
    X=+-√11i NO. +-√-11i

  • @bandarusatyanandachary1181
    @bandarusatyanandachary1181 14 годин тому +1

    The equation satisfy at x = 0

  • @walterwen2975
    @walterwen2975 4 години тому +1

    A Very Nice Math Olympiad Problem:
    [(x + 2)(x + 3)(x + 4)(x + 5)]/[(x - 2)(x - 3)(x - 4)(x - 5)] = 1; x =?
    [(x + 2)(x + 5)][(x + 3)(x + 4)] = (x² + 7x + 10)(x² + 7x + 12)
    = (x² + 10 + 7x)(x² + 12 + 7x) = (x² + 10)(x² + 12) + 14x(x² + 11) + (7x)²
    [(x - 2)(x - 5)][(x - 3)(x - 4)] = (x² - 7x + 10)(x² - 7x + 12)
    = (x² + 10 - 7x)(x² + 12 - 7x) = (x² + 10)(x² + 12) - 14x(x² + 11) + (7x)²
    (x + 2)(x + 3)(x + 4)(x + 5) = (x - 2)(x - 3)(x - 4)(x - 5)
    (x² + 10)(x² + 12) + 14x(x² + 11) + (7x)² = (x² + 10)(x² + 12) - 14x(x² + 11) + (7x)²
    28x(x² + 11) = 0, x(x² + 11) = 0; x = 0 or x² + 11 = 0, x² = - 11; x = ± i√11
    Answer check:
    [(x + 2)(x + 3)(x + 4)(x + 5)]/[(x - 2)(x - 3)(x - 4)(x - 5)]
    = [(x² + 7x + 10)(x² + 7x + 12)]/[(x² + 7x + 10)(x² + 7x + 12)] = 1
    x = 0: [(2)(3)(4)(5)]/[(- 2)(- 3)(- 4)(- 5)] = 1; Confirmed
    x = ± i√11: x² = - 11
    x² + 7x + 10 = - 11 ± 7i√11 + 10 = - 1 ± 7i√11, x² + 7x + 12 = 1 ± 7i√11
    (x² + 7x + 10)(x² + 7x + 12) = (- 1 ± 7i√11)(1 ± 7i√11) = - 1 - 539 = - 540
    x² - 7x + 10 = - 1 -/+ 7i√11, x² - 7x + 12 = 1 -/+ 7i√11
    (x² - 7x + 10)(x² - 7x + 12) = (- 1 -/+ 7i√11)(1 -/+ 7i√11) = - 1 - 539 = - 540
    [(x² + 7x + 10)(x² + 7x + 12)]/[(x² + 7x + 10)(x² + 7x + 12)] = 1; Confirmed
    Final answer:
    x = 0; x = i√11 or x = - i√11