Can you solve this? | iota maths problem | Oxford entrance exam question

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 299

  • @MrAlvaroxz
    @MrAlvaroxz Місяць тому +94

    It's eassier if you use the polar form:
    i=e^[(π/2)+2kπ]i
    i^½=e^(π/4+πk)i
    i^½=cos(π/4+πk)+i×sin(π/4+πk)
    Now if k is even, then:
    i^½=sqrt(½)+sqrt(½)i
    If k is odd, then:
    i^½=-sqrt(½)-sqrt(½)i
    Then:
    i^½=±sqrt(½)±sqrt(½)i

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  Місяць тому +5

      Nice Approach 👍

    • @dansf2
      @dansf2 Місяць тому

      that's pretty nice

    • @KipIngram
      @KipIngram Місяць тому +1

      Yes, this is generally true, but in this case the conversion to rectangular is trivially easy "in-head" work.

    • @bhobba
      @bhobba Місяць тому +1

      That's how I did it.. Euler strikes again. It's like i^i

    • @thomasgreene5750
      @thomasgreene5750 Місяць тому +4

      Right approach, but the two solutions are +sqrt(1/2)*(1+i) and -sqrt(1/2)*(1+i)

  • @medboker
    @medboker Місяць тому +66

    Your solution gives the impression there are 4 solutions where as there only 2 solutions. You have to notice that an and b have the same sign. And therefore leaving only two solutions

    • @rvqx
      @rvqx Місяць тому +13

      So the answer is: √i = ±( √2/2 + i√2/2 )
      a and b have the same sign since 4:25 2ab=1

    • @rainerzufall42
      @rainerzufall42 Місяць тому +5

      @@rvqx Indeed, the other two square to -i because of 2ab=-1. But only one of them is the principal root, that is
      √i = 1/2 √2 + i/2 √2

    • @rainerzufall42
      @rainerzufall42 Місяць тому +2

      In other words: √i = cos(45°) + i sin(45°)

    • @rainerzufall42
      @rainerzufall42 Місяць тому +2

      Or even √i = (1 + i) / |1 + i|

    • @ManjulaMathew-wb3zn
      @ManjulaMathew-wb3zn Місяць тому +2

      Since 2ab is positive an and be should have the same sign. Also since an and b are real the complex 4th roots are ignored.
      Having said all that polar form is the way to go.

  • @SanePerson1
    @SanePerson1 Місяць тому +29

    i = e^{iπ/2) ⇒ √i = ±exp(iπ/4) = ±(cos(π/4) + isin(π/4)) = ±(1/√2)(1 + i)
    Introducing the polar form of complex numbers makes this exercise trivial.

    • @rainerzufall42
      @rainerzufall42 Місяць тому +1

      Only one of these two (the positive one) is a principal root of i!

    • @nickdsp8089
      @nickdsp8089 5 днів тому

      ​@@rainerzufall42 Yes but the question was not to find the principal one. I can accept both of them.

    • @rainerzufall42
      @rainerzufall42 5 днів тому +1

      @@nickdsp8089 No, you can't! Sqrt(x) is per definitionem the principal (in IR positive) root and only this one. The other root is called - sqrt(x). Both + sqrt(x) and - sqrt(x) build the set of 2 real roots y_1 / y_2 of y^2 = x > 0 (1 root for x = 0, no real root for x < 0).

  • @christianlopez1148
    @christianlopez1148 Місяць тому +34

    i=exp(i*pi/2), then (i)**(1/2)=exp(i*pi/4)=cos(pi/4)+isen(pi/4)=root(2)/2*(1+i)

    • @winstonridgewayhardy
      @winstonridgewayhardy Місяць тому +3

      This is only the solution from the first quadrant. The other one is in quadrant 3: exp(i*5pi/4) or equivalently -root(2)/2(1+i)

    • @rainerzufall42
      @rainerzufall42 Місяць тому +3

      @@winstonridgewayhardy The principal root of i IS the one in the first quadrant!
      The value in the third quadrant solves x² = + i, but only x = √i = + (1 + i) / √2 is valid.
      Just like √2 = + 1.414... only, although (- 1.414...)² = 2 as well!
      There's a stark difference between y = √x and y² = x. The first form has one solution for y, the second form has 2!

    • @e.nicolasleon-ruiz5491
      @e.nicolasleon-ruiz5491 13 днів тому

      Show me some real life use for this problem, and I won't call this a pure self-satisfaction exercise.

  • @actuariallurker9650
    @actuariallurker9650 Місяць тому +77

    Use polar coordinates and solve the problem in 3 lines - what a waste of time

    • @rohei1681
      @rohei1681 Місяць тому +4

      Base knowledge of complex analysis

    • @TmyLV
      @TmyLV Місяць тому

      @@rohei1681 YES!! The guy presenting is REALLY STUPID!!

    • @pdfads
      @pdfads 29 днів тому +5

      And the way they wrote the final answer makes it look like there are four solutions. Should have written +-(1+i)/sqrt(2) , to avoid confusion.

    • @CaspaB
      @CaspaB 25 днів тому +2

      Agree. I did it in my head, thanks to polar coordinates, learnt 50+ years ago.

    • @offgrid-bound
      @offgrid-bound 18 днів тому

      Yup…

  • @dimetree8496
    @dimetree8496 Місяць тому +22

    Frankly, why it has to go through these many steps? You had a^2-b^2=0 and 2ab=1.
    From first equation you get a=+-b and from second, you get a^2=1/2, i.e., a=+-root over half.

  • @paulcohen6727
    @paulcohen6727 Місяць тому +15

    I saw this title last night and found the answer in a minute or two while I was falling asleep, using de Moirvé's Theorem: i^1/2 = r^1/2 (cis @)^ 1/2 or 1^1/2(cos 1/2(cos 90/2 + i sin 90/2) = sqrt(2)/2 + i sqrt(2)/2. All this spinning 0f your algebraic wheels is a waste of time when you can get the answer directly, visualizing the unit circle.

    • @osmanhussein3893
      @osmanhussein3893 Місяць тому

      Exactly! That is what i did without even using a pen and paper!

    • @briansauk6837
      @briansauk6837 Місяць тому

      Indeed. Just imagine how long i^i would take using some convoluted approach like this...

    • @mieses-te9yl
      @mieses-te9yl Місяць тому +1

      A little bit emphatic, no?

  • @jmguiche9234
    @jmguiche9234 Місяць тому +4

    It is really easy for an Oxford exam !

  • @okaro6595
    @okaro6595 Місяць тому +12

    What angle when doubled produces 90 degrees? Squaring doubles the angle.

  • @keeteo82
    @keeteo82 Місяць тому +9

    By the definition of the the sqrt sign : sqrt(z) is THE principal square root of z, which is unique. For example, sqrt(1)=1 not -1, and sqrt(i)=1/sqrt(2) + i*sqrt(2), Though the equation z^2 = i has two solutions.

    • @rainerzufall42
      @rainerzufall42 Місяць тому +4

      Exactly! Only the solution in the first quadrant IS √i.

    • @PlasmaFuzer
      @PlasmaFuzer 26 днів тому +1

      I was thinking the same thing. Not to mention the polar coordinate representation. Using a + bi is so much more cubersome.

  • @Jeph629
    @Jeph629 Місяць тому +3

    If you're a "math" beast, then you know it's a "math" problem. Understanding the finer points of language will generally get you farther than knowing the most esoteric math.

  • @bookert2373
    @bookert2373 Місяць тому +4

    This video could be used in high school as a teaching tool to illustrate the hard way to solve this problem and then show the way a mathematician would easily solve it using the fact that angles add when multiplying complex numbers. I think Oxford would be looking for the second approach.

  • @pnachtwey
    @pnachtwey Місяць тому +4

    Think of rotating vectors. I is a vector of length on pointing up at 90 degrees so rotate it right 45 degrees. This provides the obvious solution.

  • @KipIngram
    @KipIngram Місяць тому +6

    Of course - that can be done in one's head in seconds. It's sqrt(2)/2 + i*sqrt(2)/2 and -sqrt(2)/2 - i*sqrt(2)/2.

    • @rainerzufall42
      @rainerzufall42 Місяць тому +2

      Only the first one is the principal root √i. As an Oxford student, we should know that!

  • @renesperb
    @renesperb 25 днів тому +2

    If you write i = exp[ i π/2] ,then it follows that √ i = exp[ i π/4]= cos π/4 +i sin π/4 = √2/2*(1+i) . Note : there is only one value for √ i .There would be two values if you solve z^2 = i .

  • @seoul-13
    @seoul-13 Місяць тому +1

    Thank you interesting your solution

  • @lesbbsayan7212
    @lesbbsayan7212 Місяць тому +2

    if a²-b²=0 we have (a+b)(a-b)=0
    so a+b=0 or a-b=0
    we get a=-b or a=b
    so 2ab=1 is 2a²=1 or -2a²=1
    a²=1/2 or a²=-1/2
    but if a is not a complex number we can't have a²=-1/2
    so a+b is not 0 and this is a-b=0
    a=sqrt(1/2)=+/-1/sqrt(2)
    so b=+/-1/sqrt(2)
    we have sqrt(i)=+/-(1/sqrt(2)+i/sqrt(2))
    i think this is better than use 2ab=1 because we don't have to use fraction sum.

  • @winstonridgewayhardy
    @winstonridgewayhardy Місяць тому

    I do appreciate your clear and easy to follow format... but yes, a small error that you left both + and - signs within the final answer... since there are only 2 answers which as people below have noted is clear from polar form on the unit circle in terms of rotations from e^(iPi/4) or e^(i5Pi/4) and so: In rectangular form just 2 roots of sqrt(i): sqrt(2)/2 + i sqrt(2)/2 and -sqrt(2)/2 - i sqrt(2)/2

  • @prajaktab7010
    @prajaktab7010 Місяць тому +4

    nice example. unic solution.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  Місяць тому

      Thankyou so much 😊

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  Місяць тому

      Thanks for your lovely feedback ☺️
      It means a lot for us.

    • @JunedHussain
      @JunedHussain Місяць тому

      I did not get a^2 - b^2 = 0 and abi=1i.
      What is the logic behind this

    • @dimetree8496
      @dimetree8496 Місяць тому +1

      ​@@JunedHussain it means real number equals to real number and imaginary number equals to imaginary number. More conceptually whatever co-efficient an imaginary number has it will never be real number. Think like, 5 apples will never be 3 oranges.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  Місяць тому

      @@dimetree8496 Appreciable 👍

  • @wmatos
    @wmatos Місяць тому +2

    Thank you.

  • @pbierre
    @pbierre Місяць тому +1

    It's easy if you know that, plotted in the 2D plane, a complex number's sqrt is rotationally 1/2-way back to the positive real axis. Since i points straight up on the positive imaginary axis, rotationally 1/2 way back has to be the composite √.5 + √.5i. If you multiply (√.5 + √.5i)(√.5 + √.5i) using FOIL, the result you get is i. This is the positive square root.

  • @gilbertogarbi4479
    @gilbertogarbi4479 Місяць тому +8

    Much simpler using Euler's equation.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  Місяць тому +1

      How...?

    • @eng954
      @eng954 Місяць тому +1

      @@MathBeast.channel-l9i (cospi/2 +isinpi/2)^^1/2 then it can be solved easely by dividng the pi to 2

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  Місяць тому

      @@eng954🆗 👍

    • @tommyliu7020
      @tommyliu7020 Місяць тому

      @@MathBeast.channel-l9ijust realize that square root of -1 is half of the rotation from 1 to -1, so the square root of i is half of the rotation from 1 to i, which correspondents to when theta = pi/4 on the unit circle. There you’ve gotten your answer.

  • @gaminghd3950
    @gaminghd3950 12 днів тому

    Nice video. The calculation could have been shorter as from a^2-b^2=0 follows a=b. Then a=+/- 1/sqrt(2).

  • @BollyFan2-ue6cq
    @BollyFan2-ue6cq Місяць тому +5

    Technically the way you have written the answer it is 4 answers, but really there should only be 2 answers.
    I think someone in the comments below mentions answers to be +/- (1/sqrt(2)) (1 + i)
    That is just 2 answers. The combos where a and b have different signs are not valid I assume.

    • @RexxSchneider
      @RexxSchneider 23 дні тому

      The combos where a and b have different signs, i.e. ±(1-i)/√2, are the square roots of -i. However, the radical sign conventionally imples the principal root which would be √(-i) = (1-i)/√2.

  • @harisatya5282
    @harisatya5282 Місяць тому +3

    i=(1/2)(2i)
    =(1/2)(1² +2×1×i+i²)
    =(1/2)(1+i)²
    =[{1/sqrt(2)}(1+i)]²
    => sqrt(i)=±[{1/sqrt(2)}(1+i)]

    • @iran-sweden
      @iran-sweden Місяць тому +1

      you missed i=(-1/2)(-2i), so we have 4 answeres for this question, two other answers are ±[{1/sqrt(2)}*i(1+i)] =±[{1/sqrt(2)}(1-i)]

    • @harisatya5282
      @harisatya5282 Місяць тому

      @@iran-sweden
      👍 💗

  • @Electronics4Guitar
    @Electronics4Guitar 26 днів тому +2

    I did this one in my head in about 30 seconds.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  26 днів тому

      How...?
      Explain a bit...

    • @CaspaB
      @CaspaB 25 днів тому

      Me too. Polar coordinates.

    • @RexxSchneider
      @RexxSchneider 23 дні тому

      @@MathBeast.channel-l9i Recall that i = exp(πi/2). So √(i) = exp(πi/4) = cos(πi/4) + i.sin(πi/4) = 1/√2 + i/√2 = (1+i)/√2. I think 30 seconds is more time than is needed for that.

  • @rogermarshall2310
    @rogermarshall2310 Місяць тому +1

    laboured!

  • @Matteo-nt3qr
    @Matteo-nt3qr Місяць тому +2

    Sqrt i = cos(pi/2)+1[sin(pi/2)]

  • @ManojkantSamal
    @ManojkantSamal Місяць тому +2

    Respected Sir, Good morning

  • @BigEaster
    @BigEaster Місяць тому +5

    Never heard of De Moivre formula? Immediate solution.

  • @adgf1x
    @adgf1x Місяць тому +4

    i^1/2=(-1)^1/4

  • @15_sayandeepkundu_ee28
    @15_sayandeepkundu_ee28 Місяць тому +1

    I did it in DSP(Digital Signal Processing) in Engineering

  • @kpi6438
    @kpi6438 Місяць тому +2

    A strange method of finding a solution! By the time such a problem appears (in mathematics, physics...), students already know enough about complex numbers and their exponential representation to solve the problem easily and quickly.

  • @everettmcinnis5858
    @everettmcinnis5858 4 дні тому +1

    Here's a method that works for any complex number. Express the complex number in polar form. To get the square root of it, take the square root of the magnitude, and divide the angle by 2. Be sure to use positive angles only.

  • @AnilSonkar-ly5ex
    @AnilSonkar-ly5ex Місяць тому +2

    Nice video

  • @shaileshdhuri4166
    @shaileshdhuri4166 Місяць тому +1

    e^(pi *- i / 4 ) = (-1)^(1/4) == i ^ 0.5. One step solution

  • @AkiraNakamoto
    @AkiraNakamoto Місяць тому +2

    I use the geometric approach to solve the problem in 30 seconds.
    i is actually THE OPERATION of counter-clockwise rotation of 90 degrees on the complex plane.
    sqrt(i) is actually THE OPERATION such that you do sqrt(i) twice, it will rotate counter-clockwisely 90 degrees.
    This corresponds to two solutions: the 45-degree CC rotation (i.e., 1/sqrt(2) + i/sqrt(2)) and the 215-degree CC rotation (i.e., -1/sqrt(2) - i/sqrt(2)).
    There are only these two possible solutions on the complex plane. Therefore, your answer giving 4 solutions is not right.

    • @AkiraNakamoto
      @AkiraNakamoto Місяць тому +2

      typo: 215 -> 225.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  Місяць тому

      Boss🫡
      You logic is😇

    • @steve_s9412
      @steve_s9412 Місяць тому

      Yes, that's how I did it. Once you realise that the required operation is a 45 degree rotation then it's obvious from pythagoras that the real and imaginary parts are both root 2 over 2.

  • @bernhardkoster3095
    @bernhardkoster3095 3 дні тому

    as it is already said!!! sqrt(i)=sqrt(exp(i*pi/2))=(exp(i*pi/2))^(1/2)=exp(i*pi/4) + Discussion that the complex root is ambigeous -> a one-liner!

  • @fernandoderoque1920
    @fernandoderoque1920 Місяць тому +1

    sqrt(i) = i^(1/2) =
    e^i(π/2+2 nπ)^(1/2)
    =e^i(π/4+nπ)
    n in Q

  • @PaulEhmig
    @PaulEhmig 29 днів тому +1

    e^(π/4)i

    • @PaulEhmig
      @PaulEhmig 29 днів тому

      And the others adding 2kπ to pi/4

  • @Heisemberg08
    @Heisemberg08 Місяць тому

    Power rule of complex number in the trigonometric form. Z^n = p^n[cos(n*x)+isen(n*x)]. The argument (x) and the module p is easier to identify, once that z = i , p=1 and x= pi/2 (90 degrees), with n=1/2. Just substitute on the trigonometric form and it's done. Dont need to use all that way in the algebraic form. The answer is √2/2 +i√2/2. The answer for (-i)^1/2 is √2/2 - i√2/2. Don't forget the odd/even function rule for cos and sin.

  • @maamouhinda7722
    @maamouhinda7722 Місяць тому +4

    You way it's ok but too hard and long.
    Short solution : i= e^(pi/2 +2 k.pi)
    i^1/2= e^(pi/4 + k.pi)=√2/2 +i.√2/2 for k=2.p and -√/2 -√2/2 for k= 2.p+1

  • @topquark22
    @topquark22 14 днів тому

    Easy if you visualize. No calculation required. Using Euler's formula, i = e^i(i pi/ 4) which is the point on the unit circle at 90 degrees, so sqrt(i) = e^(i pi/8), which is the point on the unit circle at 45 degrees, or (sqrt(2), sqrt(2)). This represents sqrt(2) + i sqrt(2). This is the standard convention, that sqrt() has 1 solution, just as with real numbers. But you could also say another solution is -sqrt(2) - i sqrt(2), which is the point on the unit circle at 225 degrees.

  • @yairidan5007
    @yairidan5007 Місяць тому +2

    = + - (cos 45 + i sin 45)

  • @IRVINMILLER
    @IRVINMILLER 19 днів тому +1

    A good understanding of math is illustrated by finding the simplest way of solving a problem. Though some times you want to solve it another way to build your confidence.. Most of your commentators realized i=e^((pi/2)i) and solved it in one or two steps. Try solving i^i with your technique.

  • @iran-sweden
    @iran-sweden Місяць тому +1

    i=e^((2πn+π/2)i)=>i^(1/2)=e^((πn+π/4)i)=cos(πn+π/4)+isin(πn+π/4)=±(√2/2)(1 ± i) , n=1,2,3,4,...

  • @philippedelaveau528
    @philippedelaveau528 16 днів тому +1

    Il me semble qu’un candidat à Oxford ne sait pas résoudre ce problème immédiatement en une ligne par l’exponentielle, c’est qu’il n’à vraiment le niveau et sera illico recalé.

  • @gnanadesikansenthilnathan6750
    @gnanadesikansenthilnathan6750 Місяць тому

    Nice

  • @JSSTyger
    @JSSTyger 27 днів тому +1

    √(i) = ±√(2)/2(1+i)

  • @ExpressStaveNotation
    @ExpressStaveNotation Місяць тому

    root of i = / (unit vector at 45 degrees). = (1 + i)/r2

  • @srinivasch-re2oq
    @srinivasch-re2oq Місяць тому

    √i = 1
    I ^4/4 which means i^2 = -1 and then square equal to 1
    Then √1 = 1
    So √i = 1

  • @marksteers3424
    @marksteers3424 Місяць тому +1

    The e to the i theta is simplest but even in your workings - when you get a2-b2 = 0 and we know that a and b are real then a = b. 2ab =1 becomes 2a2 =1 a = 1/ sqroot 2.

  • @Georgios-ft5nm
    @Georgios-ft5nm Місяць тому +2

    More interesting is the fact that i^i is real.

    • @carultch
      @carultch 2 дні тому

      And not just the principal solution either. ALL solutions of i^i are real numbers.

  • @martinrosenau478
    @martinrosenau478 Місяць тому +18

    Again the same mistake I already commented in another video this week:
    √4 is not ±2 (although (-2)² is also 4) but √4 is defined as +2!
    This is true for all complex numbers (including real numbers):
    With exception of the value x=0, there are exactly two values y that satisfy y²=x, but only one of the two values is defined as the square root √x.
    According to the German language Wikipedia, it is the value with the positive real part (for this reason, √4 is +2 (which is equal to +2+0i) and not -2 (which is equal to -2+0i)); and if the real part of the two values y is zero, it is the value with the non-negative imaginary part (for this reason, √(-1) is +i but not -i).
    For this reason, √i is only (√2/2)(+1+i) but not (√2/2)(-1-i).

    • @KipIngram
      @KipIngram Місяць тому +3

      They're both square roots. I've always been taught to call the one you identified the "principle square root."

    • @martinrosenau478
      @martinrosenau478 Місяць тому +3

      @@KipIngram Because language may play a role here, I also checked the English language Wikipedia:
      If I understand the Wikipedia text correctly, both "+√x" and "-√x" are called "square roots" in English language; however, only one of the two values can be written as "√x" while the other one must explicitly be written as "-√x".
      I don't know about the original Oxford question, but in the video the question is: "Find √i", not "Find the square root of i".

    • @radupopescu9977
      @radupopescu9977 Місяць тому

      @@KipIngram Indeed. In real life we choose the positive one, because of practical purposes. In Pythagoras theorem you can have negative lengths.
      But with complex number, we must take all into account.
      So x^(1/n), has exactly n values, where n is any natural number.
      (-16)^(1/2) has 2 values: 4i (principal) and -4i
      (-27)^(1/3) has 3 roots: -3, (3/2 + (3*((3)^(1/2))*i)/2) and (3/2 - (3*((3)^(1/2))*i)/2)

    • @tontonbeber4555
      @tontonbeber4555 Місяць тому +1

      ​​@@radupopescu9977x^(1/n) is an expression, a mathematical operation. It as only one value ... By the way, following your "theory", how many values has x^pi ?

    • @radupopescu9977
      @radupopescu9977 Місяць тому

      ​@@tontonbeber4555
      I did a mistake when I wrote this comment and now I rewrite it, and I apologize for that.
      Let's take 4^pi= 4^(-i*ln(-1)).
      And complex log is multivalued!
      Of course the principal value is 4^pi=77.88.... of 4^(-i*ln(-1)) in practice we use this value, but the 4^(-i*ln(-1)) has INFINITE VALUES.
      Because Ln(-1) is +/-i*pi; +/-i*3pi, and so on...
      Do not restrict to reals! Some time thinking only to complex numbers is also a narrow vision.
      Bicomplex numbers offers new classes of solutions.
      I like bicomplex numbers because they are commutative in contrast with quaternions which are not. They also have a disadvantage: zero divisors!
      Let's give you another e.g. where complex numbers are a narrow way to see things. For solving this equation we need bicomplex numbers. Imagine how multi-complex numbers even more diverse.
      An e.g. of equation which has other solution then 0.
      x*(i-j)=0, and x is NOT 0. What is the value of x?
      In bicomplex numbers we define: i^2=-1, j^2=1, i*j=j*i, and i is different of j. So bicomplex numbers are of form: a+bj, where a and b are complex numbers.
      In this case the solution is x=i-j
      In bicomplex numbers any number of form a*(1+ij)(1-ij)=0 (zero divisors), where a is any complex number, except 0.
      So it is possible to have x*y=0, with x and y not 0!

  • @laogui2425
    @laogui2425 24 дні тому

    using r*cis(θ) works well, I suggest, and gives at once
    sin^2(θ)=cos^2(θ) and 2r*sinθcosθ=1
    so r = 1 and θ=m*pi/4 with m in (1,3,5,7)

    • @RexxSchneider
      @RexxSchneider 23 дні тому

      Not well enough, it seems. The expression exp(mπi/4) where m ∈ { 1, 3, 5, 7 } represents four values. Two of these (m=1, 5) represent the two square roots of i. The other two (m=3, 7) represnt the two square roots of -i. Only the one where m=1 represents the principal value of the square root of i denoted by √(i). And exp(πi/4) evaluates to (1+i)/√2.

  • @jeanrosw
    @jeanrosw Місяць тому

    i represents a vector in the plan xy having coordinates (0,1) racine of i is a vector having coordinate s racine(2)/2, racine(2)/2

  • @jsc3417
    @jsc3417 Місяць тому +1

    Easy Sqart(i)=i^0.5

  • @thomasharding1838
    @thomasharding1838 Місяць тому +4

    "Let's Suppose" that i = ±√-1 then can we "suppose" that √i = ± fourth root of -1 ‽

    • @itsmetrendy8471
      @itsmetrendy8471 Місяць тому +3

      exactly what I was thinking

    • @thomasharding1838
      @thomasharding1838 Місяць тому +1

      @@itsmetrendy8471 The problem with our thinking is that it doesn't take 10 minutes to express it.

    • @itsmetrendy8471
      @itsmetrendy8471 Місяць тому

      @@thomasharding1838 true because I just saw the way how the normal expression just needs another root on the right side and simplified it

  • @Heisemberg08
    @Heisemberg08 Місяць тому

    Negative part in power of complex numbers just appear if π/2

  • @SfhjjFghjki
    @SfhjjFghjki Місяць тому

    .....الخصر الاكبر....لترديف الجدع...
    هو الرجوع بمقدار الميلان....ن=ب^-4اس....
    بولين....مثال ...1626. سود....عفوائية....بارامتر....الحجز ...العقدة ...
    ليس بالمجموعة العقدية..ن....نحن طلبوا طلب
    الرياضيات الأصيلة....المجموعة العقدية هي الة. ...طرح الابستيمةلوجي. للمعادلة...
    الحل..لما كتب. .ما هو إلا تمسيك الجزع والصبر. ..على الزعم...الرياضياتي للحرية
    وداد عبدالصمد....المعهد العالي لاحصاء العلوم
    تولوز ..فرنسا

  • @davesthinktank
    @davesthinktank 14 днів тому

    Plot in polar coordinates, take half, answer is obvious with almost zero work.

  • @jessenemoyer1571
    @jessenemoyer1571 14 годин тому

    ±(1 + i) /√2 is immediate if you see that i = e^iπ/2 hence √i = ± e^iπ/4

  • @TheOldeCrowe
    @TheOldeCrowe Місяць тому +3

    i = e^(iπ/2)
    √i = e^(iπ/4)
    = cos(π/4) + i sin(π/4)
    = (1 + i)/√2
    Straightforward.
    97% failed is a ridiculous click-bait statement.

  • @MYeganeh100
    @MYeganeh100 Місяць тому +1

    👌

  • @michaelalitheturkali
    @michaelalitheturkali Місяць тому +1

    x* (xlessy)*(xless2y)*(xless3y)*................... and use where useful

  • @antoniosofal7229
    @antoniosofal7229 Місяць тому +1

    Gostei

  • @herbertklumpp2969
    @herbertklumpp2969 Місяць тому

    a^2 = b^2 conclude a = + - b
    Therefore if a=b you get a^2 =1/ 2 a= b = +- sqrt( 1/2)
    a= - b no solution
    Result:sqrt,( i) = +- sqrt(1/2)*( 1+i)

  • @moebadderman227
    @moebadderman227 Місяць тому

    let a + bi = √i
    then (a + bi)² = i, so (a² - b²) + 2abi = i
    therefore ab = ½ so _a_ and _b_ must have the same sign,
    and a² = b², so a = b = ±√½
    so the two solutions are √i = √½ + (√½)i, and -√½ -(√½)i

  • @toshimakusugamo
    @toshimakusugamo 2 дні тому

    √i = ±( √2 / 2 + √2 / 2 i )
    You made a mistake at scene 7:35.
    b is the dependent variable of a.
    b = 1 ÷ 2 ( ±1 / √2 ) : double-sign corresponds.
    To avoid making these mistakes
    Case 1: a = 1 / √2
    b = 1 ÷ 2( 1 / √2 )
    Case 2: a = -1 / √2
    b = 1 ÷ 2( -1 / √2 )

  • @Christopher-e7o
    @Christopher-e7o Місяць тому +1

    +5:)

  • @Birol731
    @Birol731 Місяць тому +1

    My way of solution ▶
    x= √i
    x²= i
    i= eᶦθ
    θ= π/2

    i= eᶦ⁽π/²⁾

    x²= cos[(π/2 +2πk)/n] + isin[(π/2 +2πk)/n]
    n= 2
    a) for k= 0
    x₁= cos[(π/2+0)/2] + isin[(π/2+0)/2]
    x₁= cos(π/4) + isin(π/4)
    cos(π/4)= √2/2
    sin(π/4)= √2/2

    x₁= √2/2 + i √2/2
    x₁= √2/2(1+i)
    b) for k= 1
    x₂= cos[(π/2+2π)/2] + isin[(π/2+2π)/2]
    x₂= cos(5π/4) + isin(5π/4)
    cos(5π/4)= -√2/2
    sin(5π/4)= -√2/2

    x₂= -√2/2 - i √2/2
    x₂= -√2/2(1+i)
    𝕃= { x ∈ ℂ : { -√2/2(1+i) , √2/2(1+i) }

  • @Arcangelnino
    @Arcangelnino Місяць тому +1

    but why is a^2 - b^2=0 and i^1/2= a + bi? these are only supositions and theres no way to prove it, im new to complex numbers so tell me if im wrong plz

  • @phongsakbuala2483
    @phongsakbuala2483 Місяць тому +1

    i^0.5 = e^(i(pi/4 +/- npi))= +/-(1+i)/sqrt2

  • @69Hauser
    @69Hauser Місяць тому +1

    A eso le llamo yo simplificar... y malgastar rotulador. Al mismo resultado se llega por vías mucho más simples. Por cierto, menuda tortura de música. Y Einstein, ¿qué tiene que ver con Oxford?. ¡Ah, que lo de Oxford también es un cebo! Vale.

  • @janejohnson8353
    @janejohnson8353 Місяць тому +1

    This problem took forever. How long do students have to complete the entrance test? As stated below, there are quicker and easier ways to do it.

  • @pennstatefan
    @pennstatefan Місяць тому

    I got -1.

  • @konnischeller5185
    @konnischeller5185 Місяць тому

    Das ist exakt der Lösungsweg, den ich in der 9. klasse Realschule gefunden hatte.

  • @debasishbose6376
    @debasishbose6376 Місяць тому

    Have never seen knowledge so well dramatized.

  • @richardmullins44
    @richardmullins44 Місяць тому

    on the argand diagram i is (1, pi/2), so sqrt of i is (1, pi/4). unfortunately my brain fades out at this point, and I can't think what the other value is? Would it be (1, pi/4 + pi)?

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Місяць тому +1

    (x ➖ 1ix+1i)

  • @ianstopher9111
    @ianstopher9111 5 годин тому

    I suspect this video was used to generate comments on how it can be done in 3 lines using polar form to get the principle solution. I did it in 2 lines + a circle with triangles to remind myself of sin and cos values. Damn, now I have generated another comment.

  • @johnvonhorn2942
    @johnvonhorn2942 Місяць тому

    I'm going to "shoot in the dark" and say that. by definition i^2 = -1 so i = sqr(-1) so sqr(i) = -1 ^ (1/4)
    That's as good as I get and if it's not good enough then, "who cares?" cos I'm not Leonard Euler or Frederick "Wilhelm" Guass. I work at Poundland on the minimal wage and I'm even pretty terrible at that job.

  • @lynnrathbun
    @lynnrathbun Місяць тому +3

    solve in 5 seconds in polar coordinates, in your head

    • @joeviolet4185
      @joeviolet4185 Місяць тому

      I purport that out of the 3% who solved the problem, 97% again never heard about the complex number plane and how to do algebra on it.
      Thus, the simple solution is: Divide the angle the complex number 0+1·i forms with the positive real axis, which is 90° by 2 and take the square root of its absolute value, which is 1. Next draw the resulting complex number a+b·i, which then forms an angle of 45° and has an absolute value of 1. If you remember a little bit of what you learnt about sin and cos at school, you immediately know that a=b=1/sqrt(2), otherwise look it up in any formulary.

    • @henkn2
      @henkn2 Місяць тому

      Can you demonstrate what happened in your head in those 5 seconds?

  • @T121T
    @T121T 11 днів тому

    Is that four answers or two? Tye plus and minus parts?

    • @carultch
      @carultch 2 дні тому

      There are n qty nth roots, of any given complex number. That is, with the special exception of the roots of zero, all of which are trivially equal to zero.
      This means there are two square roots of i. The principal root is sqrt(2)/2 + i*sqrt(2)/2. The other square root is equal and opposite: -sqrt(2)/2 - i*sqrt(2)/2.

  • @nigellbutlerrr2638
    @nigellbutlerrr2638 Місяць тому +1

    Wrong, it has one solution.
    Principal Solution.
    1/√2+ i/√2. Five seconds. R. angle theta. Use polar. Five seconds 😂

  • @EduardoSousaSaraiva-p6i
    @EduardoSousaSaraiva-p6i Місяць тому

    Using the exponential format: exp(j(pi/4 + k pi)) k element of Z

  • @carystrunk5771
    @carystrunk5771 29 днів тому +1

    Excellent! Utterly fascinating! I also like the fact that you do not speak during the explanations. In addition, your handwriting is pretty.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  19 днів тому

      Thank you very much!
      For your excellent feedback ❤️

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  19 днів тому

      Thanks for praiseing my handwriting.
      A positive feedback from audience means a lot for a content creator. It encourages and boosts the ability to provide a more better work.
      Thankyou Boss😊
      You are great
      God bless you 😇

  • @franknacozy7080
    @franknacozy7080 Місяць тому +1

    Use d moives theorem 8

  • @PauperRulesCommittee
    @PauperRulesCommittee 11 днів тому

    i was the moment my brain refused to learn any more maths

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  10 днів тому +1

      Which moment...?

    • @PauperRulesCommittee
      @PauperRulesCommittee 10 днів тому

      ​@@MathBeast.channel-l9iimaginary numbers like i. I just couldn't get over the fact we agreed not to square root a negative number, and then imaginary numbers showed up. I just couldn't

  • @daniellow426
    @daniellow426 6 днів тому

    its "c"; c*c=i
    just like 3*3=9
    :)

  • @dariuszb.9778
    @dariuszb.9778 Місяць тому

    It's extremely easy if you know what Euler's identity means and how you do powers and roots on a complex coordinate system.

  • @victorfinberg8595
    @victorfinberg8595 Місяць тому

    trivial if you know complex numbers:
    a) (1+i)/SQRT(2)
    b) multiply above by -1
    i did that in my head, in seconds.
    impossible if you don't know complex numbers.
    problem is, is this something that is taught in high school?
    if yes, then ALL stem students will do it, and none of the others. so your 97% figure is suspect

    • @victorfinberg8595
      @victorfinberg8595 Місяць тому

      p.s. why do this in such an unnecessarily complicated way?

  • @Mesa_Mike
    @Mesa_Mike Місяць тому +6

    The square root symbol only wants the principal square root (i.e. the root with the non-negative Real component).
    So there is only one answer: √i = √2/2 + i√2/2

    • @videofountain
      @videofountain Місяць тому

      Please see the answer above yours.

    • @davidwright8432
      @davidwright8432 Місяць тому +1

      Taking only the principal squrt is a convention, not logically mandated. It's not wrong to deal with both; just a violation of convention, not logic.

  • @IllllllllllIIlIIIIlIlllI
    @IllllllllllIIlIIIIlIlllI Місяць тому +4

    I thought his answer was (-1)^1/4 😅

    • @Imran52Feb
      @Imran52Feb Місяць тому

      - 1^1/4 should be acceptable too

  • @daniel_feiglin
    @daniel_feiglin 24 дні тому

    Trivial! Draw a picture: sqrt(i) is clearly (1+i)/sqrt(2). It's simple geometry.

  • @aljawad
    @aljawad Місяць тому +1

    Use Euler’s identity and Euler’s formula.

  • @colinmccarthy7921
    @colinmccarthy7921 Місяць тому

    If the square root of i = ?.You could say the square root of 1 = 1.This should help.

  • @amehachewa4757
    @amehachewa4757 Місяць тому +4

    You did a long trip to those who don't know mathematics, so please don't make confusion.
    Mathematics is fun,so make it simple by using the formula as we have learned.

  • @alicengiz1861
    @alicengiz1861 Місяць тому

    On the middle of the way it was already obvious that a=b and = +-1/2^0.5. you made a lot of redundant operations

  • @erichendriks2807
    @erichendriks2807 22 години тому

    Trivial problem. Assuming principal value of Sqrt, the immediate result is exp(pi.i/2) which can also be written as (1+sqrt(2).i)/2 . The solution path shown gives a bad impression of how advanced math is (to be) applied.