What is PCR and qPCR? | PCR Animation

Поділитися
Вставка
  • Опубліковано 17 чер 2024
  • Discover molecular biology and the Polymerase Chain Reaction (PCR). What is PCR and qPCR? PCR takes DNA, nucleotides, primers, and Taq Polymerase to make unlimited DNA. This target DNA gets seen by running it on an agarose gel in PCR or detecting it with a camera in qPCR. With qPCR probes labelled with different colours can amplify many targets per tube. PCR and qPCR get used in disease diagnosis and medical research.
    An example is respiratory infections. In respiratory infections, qPCR tests can detect the viruses and bacteria present. Thus, many targets get detected in one sample using probes in qPCR.
    🌏 www.clevalab.com
    👉 You may also like: The Basic Principles of a Cell, • Understanding Cell Fun...
    📖 This video is also a blog post with images and a PDF Summary visit: www.clevalab.com/post/pcrandqpcr
    Visit the ClevaLab Channel Page for more videos: / @clevalab
    ✉️ Sign up to the email list to be notified of new videos: www.clevalab.com/email-subscr...
    SOCIAL MEDIA LINKS
    Twitter: / _clevalab
    Instagram: / _clevalab
    Pinterest: www.pinterest.com.au/ClevaLab
    Tiktok: / clevalab
    Facebook: / clevalab
    CHAPTERS:
    00:00 Intro | The discovery of PCR
    00:18 What is a primer?
    00:34 DNA amplification by PCR
    01:33 Agorose Gel visualisation of amplified DNA
    01:59 Discovery of Thermus aquaticus (Taq) Polymerase
    02:25 The first Thermal Cycler
    02:41 The first real-time PCR (qPCR) instrument | Probes
    03:22 qPCR amplification plot basics
    04:20 Cycle Threshold (Ct) value
    05:06 Standard Curve for DNA quantitation
    05:25 Multiplex PCR | More than one target in one tube
    05:46 PCR and qPCR uses
    05:54 Respiratory virus detection with qPCR
    06:35 Ct value in Contact Tracing for COVID-19
    06:50 Summary
    #PCR #qPCR #ClevaLab

КОМЕНТАРІ • 85

  • @emirkaplan9844
    @emirkaplan9844 Рік тому +10

    That was PERFECT. PERFECT. Everything. Down to the last-minute details.

    • @ClevaLab
      @ClevaLab  Рік тому +1

      I'm so glad it helped you. 👍 Thanks for your comment. 🤓

  • @shanebernard8232
    @shanebernard8232 10 місяців тому +7

    This video, as well as the videos on Sanger and NGS, are brilliant. This the best molecular biology content I have ever seen on UA-cam. Thank you so much, you are so great!!!

    • @ClevaLab
      @ClevaLab  10 місяців тому

      That's so great to hear! 🤓 Thanks for taking the time to comment.👍

  • @alicute1661
    @alicute1661 Рік тому +51

    I found that so many articles/videos discussed the topic of PCR and QPCR in such excess that, as a beginner, I struggled to define the difference in such a way that I could understand it. Your video/s and delivery of information are commendable and I cannot thank you enough for your channel. Superb.

    • @ClevaLab
      @ClevaLab  Рік тому +4

      Thanks for your comment. 🤓 You're very welcome. I'm so happy you found it easy to understand. It's great to hear. 👍❤

  • @manojgaddam5788
    @manojgaddam5788 2 роки тому +10

    Thanks for designing a wonderful video. you made it easier to understand PCR for beginners.

    • @ClevaLab
      @ClevaLab  2 роки тому

      Thanks for your comment. 🤓 So glad to hear the video made it easier to understand PCR. 👍

  • @youssefbee8440
    @youssefbee8440 2 роки тому +5

    The most useful vid i’ve ever watched :)

    • @ClevaLab
      @ClevaLab  2 роки тому +1

      Thanks for your comment. So glad you like it. 🤓

  • @sidratulmontaha4939
    @sidratulmontaha4939 Рік тому +2

    this is such a good video. cant get a better explanation of PCR and qPCR than this video

    • @ClevaLab
      @ClevaLab  Рік тому

      Thanks so much for your comment. 🤓 I'm so glad you found it useful.

  • @ladyarcher172
    @ladyarcher172 Рік тому +2

    I seriously love your videos. Thank you

    • @ClevaLab
      @ClevaLab  Рік тому +1

      Thanks for your comment. 🤓 You're welcome, I'm glad they're helpful.

  • @dr.nguyenhuuhoackungbuou
    @dr.nguyenhuuhoackungbuou 2 роки тому +2

    Thanks for the video! many other videos on youtube but yours is easier to understand.

    • @ClevaLab
      @ClevaLab  2 роки тому +1

      So glad you liked it, that's great to hear 👍🤓

  • @alshaymaalthani3114
    @alshaymaalthani3114 2 роки тому +17

    this is my favorite video about PCR thank you. you made it easier to understand

    • @ClevaLab
      @ClevaLab  2 роки тому

      Thanks for taking the time to comment. I'm so glad it made it easier to understand. 🤓

  • @malekmahmoud2503
    @malekmahmoud2503 2 місяці тому +1

    This is AMAZING!!!!!!! Helped summarize (in detail) a 50 minute lecture in just 7 minutes!

    • @ClevaLab
      @ClevaLab  Місяць тому

      Thanks for your comment. 🤓 That's great to hear, I'm glad it helped you.

  • @ppisitpayat1147
    @ppisitpayat1147 Рік тому +1

    Awesome! Thank you, this is very helpful.

    • @ClevaLab
      @ClevaLab  Рік тому

      You're welcome! 🤓 I'm glad you found it helpful.

  • @curiouskatze
    @curiouskatze 8 годин тому

    Amazing video. It helped me a lot!

  • @bigshotagee
    @bigshotagee Рік тому +1

    This was excellent. Thanks.

    • @ClevaLab
      @ClevaLab  Рік тому +1

      Thanks for your comment. 🤓 I'm glad you liked it.

  • @francescabottona783
    @francescabottona783 2 роки тому +1

    Helpful! Thank you!

    • @ClevaLab
      @ClevaLab  2 роки тому

      Thanks for your comment. So glad you found it helpful. 🤓👍

  • @raghadalqurashi4912
    @raghadalqurashi4912 Рік тому +1

    I really enjoyed watching this 😃

    • @ClevaLab
      @ClevaLab  Рік тому +1

      Thanks for your comment. 🤓 So glad you liked it.

  • @brightasante8719
    @brightasante8719 2 роки тому +1

    Well explained

  • @cezreycor
    @cezreycor Рік тому +1

    great video! Thanks! :)

    • @ClevaLab
      @ClevaLab  Рік тому

      Thanks for your comment. 🤓 So glad you enjoyed it.

  • @abdullahialiyu6265
    @abdullahialiyu6265 2 роки тому +2

    I recommend this video for novice in pcr

  • @johnkodhek
    @johnkodhek Рік тому +1

    Thank you so much!

    • @ClevaLab
      @ClevaLab  Рік тому

      Thanks for your comment. 🤓 I'm glad you liked it.

  • @pascalwong5056
    @pascalwong5056 Рік тому

    thank you a lot; explanation with your animation is excellent and the flow ask for more......seven minutes viewing seems like 2 mins. .. thank your lots of work of animation behind for sharing knowledge🤩

    • @ClevaLab
      @ClevaLab  Рік тому

      I'm so glad you liked the animation and found it easy to watch and learn from. 🤓 Thanks for taking the time to comment. 👍

  • @ricardowu3544
    @ricardowu3544 2 роки тому +2

    Please keep doing this

    • @ClevaLab
      @ClevaLab  2 роки тому

      Thanks for commenting. 👍 There's another video in progress now. 🤓

  • @ET-gf8cq
    @ET-gf8cq Рік тому +1

    Well done
    Fantastic

    • @ClevaLab
      @ClevaLab  Рік тому

      Thanks a lot. Glad you liked it. 🤓

  • @shardsoforion
    @shardsoforion Місяць тому +1

    Somehow after a week of my professor trying to explain this to us and failing, this video helped me understand it in 7 minutes.

    • @ClevaLab
      @ClevaLab  Місяць тому +1

      It's great to hear it helped you. 🤓 Thanks for your comment.

  • @annatomasova8477
    @annatomasova8477 2 роки тому +1

    Amazing! ❤

    • @ClevaLab
      @ClevaLab  2 роки тому

      Thanks so much for your comment. 😁🤓

  • @anjammajoka1210
    @anjammajoka1210 Рік тому +1

    thanks so much for such a fantastic easy and simple explanation this makes my tomorrow paper preparation more easier🤩

    • @ClevaLab
      @ClevaLab  Рік тому

      You're very welcome. 🤓 I'm so glad it helped, thanks for taking the time to comment. 👍

  • @rezarezanaghibi
    @rezarezanaghibi 11 місяців тому +1

    Thank you!

    • @ClevaLab
      @ClevaLab  11 місяців тому

      @rezarezanaghibi You're welcome! Thanks for taking the time to comment. 🤓

  • @elliotbreman
    @elliotbreman 2 місяці тому +1

    great vid love u

    • @ClevaLab
      @ClevaLab  2 місяці тому

      Thanks for your comment. 🤓 I'm glad you like it.

  • @leocabrera6898
    @leocabrera6898 Рік тому +1

    amazing video

    • @ClevaLab
      @ClevaLab  Рік тому

      Thanks for your comment. 🤓 Glad you liked it.

  • @btskpop1930
    @btskpop1930 5 місяців тому +1

    THANKS

    • @ClevaLab
      @ClevaLab  5 місяців тому

      Thanks for your comment. 🤓 I'm glad you liked it.

  • @ntabeajohtime6301
    @ntabeajohtime6301 Рік тому +1

    Very helpful.I will like a video on Abbott RealTime PCR

    • @ClevaLab
      @ClevaLab  Рік тому

      Thanks for your comment. 🤓 OK, I'll keep that in mind. I have more PCR-themed videos planned for the future.

  • @ahmedfathibasyounidonia5836
    @ahmedfathibasyounidonia5836 Рік тому +1

    Amazing

    • @ClevaLab
      @ClevaLab  Рік тому

      Thanks for your comment. 🤓

  • @electricLG
    @electricLG 10 місяців тому +3

    This is an excellent PCR overview. I do have one question I was hoping you could answer. When selecting the primers for PCR, some textbooks/websites show the primers binding to the sequences flanking the DNA sequence of interest while others show the primers binding to the very beginning and end of the sequence of interest (not the flanking sequences). Can you explain the reason for this? I thought the primers always needed to bind to the "outside" of the sequence of interest?

    • @ClevaLab
      @ClevaLab  10 місяців тому +2

      Thanks for your question. 🤓 It can depend on the type of PCR you're doing. If you want to clone a specific gene or part of DNA, you will design the primers outside the region of interest. However, if you're doing gene expression, you'll choose a primer within the area of interest, usually across an intron boundary in the mRNA sequence.
      Primer design might be a good topic for a future video!

    • @electricLG
      @electricLG 10 місяців тому +1

      @ClevaLab So it basically depends on what application you're using the PCR for. That's kind of what I was thinking, but I wanted to ask anyway. Thank you for your response, and I think it would be great to do a video on primer design in the future!

  • @dmadhav4867
    @dmadhav4867 3 місяці тому +1

    Great vedio ,it just reminds me of kinda animation of @amebasisters .

    • @ClevaLab
      @ClevaLab  3 місяці тому +1

      Thanks for your comment. 🤓 I choose to take that as a compliment.!

    • @dmadhav4867
      @dmadhav4867 3 місяці тому

      @@ClevaLab 🙂😂

  • @user-tf8ys9wy8e
    @user-tf8ys9wy8e Рік тому +1

    I have a question for qPCR.
    How many fluorescent atoms are in the probe repoter molcule? only one or several?

    • @ClevaLab
      @ClevaLab  Рік тому

      Thanks for your question. 🤓 For each DNA probe just one dye molecule is present. The most common dye is 6-FAM (Fluorescein), one 6-FAM molecule is added to each probe. To see the chemical structure see this link: en.wikipedia.org/wiki/6-Carboxyfluorescein

  • @TheRealMorgs41
    @TheRealMorgs41 2 роки тому +2

    So, how do we make these very specific primers, which enable us to 'PCR' one specific gene, if we dont already know the DNA sequence? The sanger method of DNA sequencing, requires specific primers, complementary to the DNA younare trying to sequence. Well hold on a minute, thats a bit of a paradox isnt it. How do you know what the primer should look like if you dont know the sequence of DNA?

    • @ClevaLab
      @ClevaLab  2 роки тому +2

      Thanks, good question. 🤓 The original method by Sanger to sequence PhiX174 (a bacteriophage), the first full-length sequence made, did not use primers. This was because primers were hard to generate then. Instead, they used restriction enzymes to cut DNA into fragments and used these fragments as the primers for their sequencing reaction. So, they didn't need to know the sequence as they depended on restriction sites to create the first full genome sequence.
      Restriction enzymes are made by bacteria as a defence against bacteriophage (a virus for bacteria). They cut up the bacteriophage DNA to restrict its ability to reproduce. This fact was used by Sanger in combination with radiolabeled nucleotides.
      Today, if a sequence is unknown, you can use random hexamers to amply it in a PCR or perform shot-gun or full genome sequencing without knowing any sequence. Short DNA fragments of known sequences are stuck on the ends. These known DNA fragments are then used to sequence the unknown DNA.

    • @TheRealMorgs41
      @TheRealMorgs41 2 роки тому +1

      @@ClevaLab Thank you

  • @user-pt4ri1my2r
    @user-pt4ri1my2r Рік тому +1

    Wow just really fixed the matter for me, thanks!
    Can I use the pictures for a presentation I need to show in class?

    • @ClevaLab
      @ClevaLab  Рік тому +1

      Thanks for your comment. I'm so glad it helped you. 🤓 Sure, you can find images in the blog post or even download a pdf. Find it here: www.clevalab.com/post/pcrandqpcr

    • @user-pt4ri1my2r
      @user-pt4ri1my2r Рік тому +1

      @@ClevaLab thanks!

  • @davidconcepcion4429
    @davidconcepcion4429 Рік тому +4

    These videos always miss a very important fact that nucleotides are free-floating around with the rest of the slurry, and are snatched up by the DNA-polymerase as they pass by in order to be used for the copying.

    • @ClevaLab
      @ClevaLab  Рік тому

      Thanks for your comment. 🤓 That's a fair comment. I could have made that clearer in the video and had some nucleotides floating around.

  • @ClevaLab
    @ClevaLab  2 роки тому +5

    *Welcome to ClevaLab* - if you like the video, please give it a 👍 and subscribe so we can reach more people. Also, if you have any questions, feel free to ask in the comments.
    Get a *PDF Summary* of this video here: www.clevalab.com/post/pcrandqpcr.

  • @landcruiser6652
    @landcruiser6652 8 місяців тому +1

    Where's the 72°C for Taq polymerase?

    • @ClevaLab
      @ClevaLab  7 місяців тому +1

      Thanks for your comment. 🤓 That's a fair point, I should have included it, I can't remember why I didn't!

  • @abicoid
    @abicoid Рік тому +1

    Why conventional PCR is qualitative and real-time PCR is quantitative? :o

    • @abicoid
      @abicoid Рік тому +1

      Nice video, tho. Already subscribed. :)

    • @ClevaLab
      @ClevaLab  Рік тому +1

      Hi Abby, thanks for your question; it's a good one. Standard PCR can be semi-quantitative. We used to used this method in the lab before qPCR was available. Suppose you stop the PCR during the exponential growth phase of the samples. Then, you can compare the DNA level between samples. But, the dynamic range is tiny in comparison to qPCR. So these days, people use standard PCR for yes/no type testing.
      I hope this helps and answers your question.
      Please let me know if you have any further questions. 🤓

    • @ClevaLab
      @ClevaLab  Рік тому +1

      Thanks, so glad to have you as a subscriber. 🤓👍

    • @abicoid
      @abicoid Рік тому +1

      @@ClevaLab Ohh, but in what phase in the amplification determines the "yes" or "no" answer? Is it in the plateau phase?
      Also, if I were to optimize a PCR reaction, is it okay if I use Agarose Gel to determine the quality of DNA result through crowning? Or I still need to use UV Vis?

    • @ClevaLab
      @ClevaLab  Рік тому

      Usually, around 30 cycles are used for an endpoint PCR. This amount of cycles is enough to amplify your DNA fragment. However, people don't go out to 40 cycles for end point PCR so the fragment can also get used for cloning and sequencing. Beyond 30 cycles, there is a greater chance of non-specific amplification and PCR errors.
      Many PCR master mixes don't need any optimisation. But you can buy PCR optimisation kits if you're doing something specific. Perform the PCR with these mixes and run the samples on an agarose gel to see the best band. There are also DNA staining products that use LEDs to see the bands. But if your lab only has Ethidium Bromide, you'll need a UV light box or imaging system. You can also run the DNA on a capillary-based gel system to see the bands if you're lucky enough to have access to one.
      I hope this answers your question. 🤓 Please let me know if you have any further questions.

  • @haidarrafid2273
    @haidarrafid2273 2 роки тому +1

    karry mullis has similar fate with Einstein :)