Real Analysis 47 | Proof of Taylor's Theorem

Поділитися
Вставка
  • Опубліковано 12 лис 2024
  • 📝 Find more here: tbsom.de/s/ra
    👍 Support the channel on Steady: steadyhq.com/e...
    Other possibilities here: tbsom.de/sp
    You can also support me via PayPal: paypal.me/brig...
    Or via Ko-fi: ko-fi.com/theb...
    Or via Patreon: / bsom
    Or via other methods: thebrightsideo...
    Join this channel on UA-cam: / @brightsideofmaths
    💬 Access to the community forum: thebrightsideo...
    🕚 Early access for videos: thebrightsideo...
    ❓ FAQ: thebrightsideo...
    🛠️ What tools do you use: thebrightsideo...
    Please consider to support me if this video was helpful such that I can continue to produce them :)
    Each supporter gets access to the additional material. If you need more information, just send me an email: tbsom.de/s/mail
    Watch the whole video series about Real Analysis and download PDF versions, quizzes and exercises: tbsom.de/s/ra
    Supporting me via Steady is the best option for me and you. Please consider choosing a supporter package here: tbsom.de/s/sub...
    🌙 There is also a dark mode version of this video: • Real Analysis 47 | Pro...
    🔆 There is also a bright mode version of this video: • Real Analysis 47 | Pro...
    🔆 To find the UA-cam-Playlist, click here for the bright version: • Real Analysis
    🌙 And click here for the dark version of the playlist: • Real Analysis [dark ve...
    🙏 Thanks to all supporters! They are mentioned in the credits of the video :)
    This is my video series about Real Analysis. We talk about sequences, series, continuous functions, differentiable functions, and integral. I hope that it will help everyone who wants to learn about it.
    x
    #RealAnalysis
    #Mathematics
    #Calculus
    #LearnMath
    #Integrals
    #Derivatives
    I hope that this helps students, pupils and others. Have fun!
    (This explanation fits to lectures for students in their first and second year of study: Mathematics for physicists, Mathematics for the natural science, Mathematics for engineers and so on)
    For questions, you can contact me: steadyhq.com/e...

КОМЕНТАРІ • 41

  • @VisuallyExplained
    @VisuallyExplained 3 роки тому +19

    I found your channel by chance, and I was simply amazed by the quality and the consistency. Keep up the good work!

  • @ieppun1342
    @ieppun1342 10 місяців тому +2

    Thank you so much for this video!
    I couldn't get where the derivitive of the auxiluary function comes from, but you've shown it so plainly and explained it so easily!

  • @douglasstrother6584
    @douglasstrother6584 2 місяці тому +3

    Countless Physics and Engineering Majors saved from intractable problems!

  • @Hold_it
    @Hold_it 3 роки тому +2

    I'm happy to finally be able to understand the proof for Taylor :)
    Thank you very much for this❤️

  • @sinanakhostin6604
    @sinanakhostin6604 2 роки тому +2

    The way you prove these theorems is similar to creating an art work. I do not have any clue how you come up with these neat proofs! I hope at some point I can also be able to come up with proofs by myself. At this point I only follow your beautifully explained ones.

    • @nm-de3bw
      @nm-de3bw 6 місяців тому

      lol he didnt come up with all the proofs in analysis

  • @lucaug10
    @lucaug10 3 роки тому

    Always such a joy to see a new real analysis video! Thank you for the lessons!

  • @speedbird7587
    @speedbird7587 2 роки тому +1

    Excellent ,
    very nice, short, and instructive proof

  • @cptiglo5632
    @cptiglo5632 3 роки тому +1

    I passed analysis 1 year ago but I Still love ur videos

  • @JojiThomas7431
    @JojiThomas7431 2 роки тому +1

    Nicely done

  • @pan19682
    @pan19682 2 роки тому +1

    Congratulations you are a real very good teacher we are looking forward expanding your video playlists thanks alot

  • @johnstroughair2816
    @johnstroughair2816 2 роки тому +1

    Really nice proof!

  • @Independent_Man3
    @Independent_Man3 2 роки тому +3

    At 5:08, the t and x0 switched places in the definition of capital F subscript n, h

  • @light_rays
    @light_rays 2 роки тому

    Thanks!

  • @ahmedamr5265
    @ahmedamr5265 9 місяців тому

    Great video as usual!
    Quick question: is it sufficient that the remainder of a Taylor polynomial up to 2nd order includes h^3 to prove that it is the best quadratic approximation?
    If not, how do I prove that it is the best quadratic approximation to a function?

    • @brightsideofmaths
      @brightsideofmaths  9 місяців тому

      The 2nd order polynomial is the best quadratic approximation in the sense described in the video. So it's already proven. What exactly do you want to show now?

    • @ahmedamr5265
      @ahmedamr5265 9 місяців тому

      @@brightsideofmaths is that 2nd order polynomial the best because the remainder is of a higher order?

    • @brightsideofmaths
      @brightsideofmaths  9 місяців тому

      Yes, the remainder goes faster to zero as stated when x approaches x_0. This is actually what we mean by best quadratic approximation in this context.

  • @weiweng183
    @weiweng183 9 місяців тому

    At 2:31, the professor said “when k is equal to zero, this factor here is defined to be 1.” Is the professor also saying that (h + x_0 - (x_0 + h))^0 is equal to 1 by definition? Do we define 0^0 to be 1 in this series? I thought 0^0 is usually not defined

    • @brightsideofmaths
      @brightsideofmaths  9 місяців тому +1

      We don't define 0^0 but the symbol x^0. In other words, we write x^0 but mean the constant function 1.

  • @sslelgamal5206
    @sslelgamal5206 3 роки тому

    Thank you! So Taylor expansion does not guarantee that the approximate polynomial $T_n(h)$ is the best fit, i.e. some difference like $|f(x+h)-T_n(h)|^2$ is minimized! Then why is it the best fit?!

    • @brightsideofmaths
      @brightsideofmaths  3 роки тому

      It's the best fit in the sense of the remainder term around the expansion point x_0.

    • @TheSandkastenverbot
      @TheSandkastenverbot 2 роки тому

      Polynomials that minimize a certain norm are in general different from a Taylor expansion. So if you want a "best fit" polynomial over a finite interval, Taylor expansions are usually not a good bet.
      But they are an invaluable tool for all kinds of convergence analyses or analyses around a small neighborhood of a point.

  • @svenlovell
    @svenlovell 3 роки тому

    Tut mir leid, wenn das der falsche Platz für so eine Frage ist, aber du hast einen Kommentar geschrieben, dass du das Boox Note Air 2 für Mathe nutzt. Ich bin Mathestudent und spiele schon länger mit dem Gedanken mit ebenfalls ein E-Ink Tablet zu kaufen. Das Remarkable 2 gab es für 260 Euro und so musste ich zuschlagen. Jetzt meine eigentliche Frage, geht es dir generell um das Schreiben auf so einem E-Ink Tablet oder hat das Note Air 2 besondere nützliche Eigenschaften die es besonders gut für mathematisches macht, dass du so begeistert bist? Danke.

    • @brightsideofmaths
      @brightsideofmaths  3 роки тому +1

      Danke für die Frage! Das Remarkable 2 ist mit Sicherheit genauso gut für deinen Anwendungsfall. Letztendlich hat mich das Note Air 2 überzeugt, da ich alle PDFs problemlos darstellen kann und direkt Kommentare dazuschreiben kann :)

    • @svenlovell
      @svenlovell 2 роки тому

      @@brightsideofmaths Danke dir :)

  • @minglee5164
    @minglee5164 2 роки тому

    First time I understood

  • @pishleback6151
    @pishleback6151 3 роки тому

    Are you going to be covering integration proofs in the future? Very nice videos btw

  • @MOVIES57264p
    @MOVIES57264p Рік тому

    Can you help me

  • @minglee5164
    @minglee5164 2 роки тому +1

    The author must be a mathematician or a PhD in mathematics at least

  • @MOVIES57264p
    @MOVIES57264p Рік тому

    I want proper statement of this proof

  • @lueelee6063
    @lueelee6063 3 роки тому

    ngl that capital F looks alot like a T...

    • @brightsideofmaths
      @brightsideofmaths  3 роки тому

      I see the problem but fortunately I chose another colour there :D