Taylor Theorem Proof

Поділитися
Вставка
  • Опубліковано 10 лис 2024

КОМЕНТАРІ • 54

  • @112BALAGE112
    @112BALAGE112 5 років тому +47

    A more sophisticated name for "Junk" would be Lagrange remainder.

    • @jacoboribilik3253
      @jacoboribilik3253 5 років тому +7

      "For the sake of brevity we will always refer to this remainder as junk" quoting Euler

    • @lacnetopanky6512
      @lacnetopanky6512 5 років тому +1

      Lagrange remainder I just way of expressing the difference between function and its approximation. There exists also Cauchy remainder, integral remainder and maybe more of them. I think junk is better term for this kind of junk.

    • @pauselab5569
      @pauselab5569 6 місяців тому

      probably something like O(f^(n)) since it might not have a n+1 derivative

  • @jetstreamsam3737
    @jetstreamsam3737 Рік тому +1

    Dude,i just wanted to tank you,You are saving people from wasting hours searching for a simple proof.❤

  • @chirayu_jain
    @chirayu_jain 5 років тому +25

    I always wanted this proof

    • @AhmedIsam
      @AhmedIsam 5 років тому +6

      I swear I've been looking for this since the moment my eyes fell on Taylor series in Calculus book in my high school.

  • @benjamincolson
    @benjamincolson 5 років тому +7

    Could you make a part 2 that addresses convergence?

  • @jacoboribilik3253
    @jacoboribilik3253 5 років тому +1

    This is the best proof of Taylor's theorem, in my opinion. The rest is ok, but none of them is so simple and yet so powerful to delve into the question of what functions can and can't be represented by an infinite polynomial. Dr.Peyam, I would recommend that you make a video on taylor polynomial uniqueness, it's a beautiful fact in math.

  • @marcotanzilli4810
    @marcotanzilli4810 5 років тому

    Love this proof Dr Peyam! And it's even much easier than the one they usually teach in my uni

  • @LuisBorja1981
    @LuisBorja1981 5 років тому +1

    What a swift Taylor Theorem proof!

  • @maxsch.6555
    @maxsch.6555 5 років тому +2

    Wow I've never seen this proof. Thanks for sharing! :)

  • @ugursoydan8187
    @ugursoydan8187 4 роки тому

    this is one of the most ingenious proof that I have seen in my life. thanks you very much. and also we can continue to taking integrals infinite times. doesn't we?

  • @fedefex1
    @fedefex1 5 років тому +1

    Great! Multivariable Taylor proof now!

    • @drpeyam
      @drpeyam  5 років тому +2

      To get the multi variable version with f(x), apply this video to g(t) = f(tx), where t is real, and set t = 1

    • @fedefex1
      @fedefex1 5 років тому

      @@drpeyam thanks!

  • @davidmillerdrums
    @davidmillerdrums 5 років тому

    Wow you are so right about that proof. Soooooo nice. Sincere thanks.

  • @tgx3529
    @tgx3529 4 роки тому

    Dr Peyam,. Is here contemplated some assumed, that the function f is of class C k, in connection with the JUNK?

  • @s00s77
    @s00s77 5 років тому +1

    do we lack anything besides induction on n and the observation that f is at least C(n-1)?

  • @dgrandlapinblanc
    @dgrandlapinblanc 5 років тому

    Excellent. Thank you very much.

  • @Handelsbilanzdefizit
    @Handelsbilanzdefizit 5 років тому

    instead of a powerseries: f(x) = a0 + a1 x + a2 x² + a3 x³ + ...
    You can develop many functions as a kind of taylor product: f(x) = a0 * a1^x * a2^x² * a3^x³ * ...

  • @pauselab5569
    @pauselab5569 6 місяців тому

    the historical proof was about newton.lagrange interpolations done at nearly the same point.

  • @cach_dies
    @cach_dies Рік тому

    Who's the first guy in the meme from the thumbnail?

  • @cmcatholic1798
    @cmcatholic1798 2 роки тому

    Damn ross Taylor in the thumbnail 😂😂

  • @mathematicadeestremo6396
    @mathematicadeestremo6396 5 років тому +2

    Taylor ..... New-Zealand :)))

  • @redknight344
    @redknight344 5 років тому

    Awesome!!!!

  • @ElizaberthUndEugen
    @ElizaberthUndEugen 5 років тому

    I don't follow the step where $\int_a^x f'(a)$ becomes $f'(a) (x-a)$. Why can we do that?

    • @drpeyam
      @drpeyam  5 років тому

      f’(a) is a constant (with respect to x), so just pull it out

    • @ElizaberthUndEugen
      @ElizaberthUndEugen 5 років тому

      @@drpeyam Ah, of course. Thanks!

  • @pranavsingh9284
    @pranavsingh9284 5 років тому

    enjoyed!

  • @guitoo1918
    @guitoo1918 5 років тому +5

    Taylor Theorem never worked for me. My junk is probably just too big.

  • @6612770
    @6612770 5 років тому +1

    Simply delicious!

  • @subhrajyotidutta4725
    @subhrajyotidutta4725 5 років тому +1

    Sir just a kind request. while writing on the board try not to cover up the board.
    I like you videos AF.
    Thank you : )
    Love from india.😘

    • @RalphDratman
      @RalphDratman 5 років тому

      That is important. Also please stop and stand aside for a moment before erasing the board so we can pause the video at that point if necessary and review anything we have not yet understood.

  • @willnewman9783
    @willnewman9783 5 років тому +3

    But if you do it like this, then the constant M depends on how close x is to a. If you wanted it to hold for all x, M could go to infinity, right?

    • @Contradi
      @Contradi 5 років тому +2

      The constant M is bounded below by the maximum value of |f'''(x)| between x and a, you're correct. Choosing a more positive
      egative x value might require you to increase M. If f'''(x) is unbounded, then yes you could have it go for infinity for the "Junk" term to be valid for all x. This is in line with the expectation that using a lower order approximation for a function can result in an unbounded error as you move away from the point you use to make your approximation. e.g. my error will go to ∞ as x -> ∞ if I approximate a parabola with a line. (As a counter example, your error will not go to ∞ if you approximate, say, a sine function with a constant function like y = 0 or y=122)

  • @shandyverdyo7688
    @shandyverdyo7688 5 років тому +1

    Someday, i'll understand. :):

  • @choungyoungjae8271
    @choungyoungjae8271 3 роки тому

    cool

  • @蔺美云
    @蔺美云 2 роки тому

    You made me laugh 😂 when you said the junk…..

  • @slavdam2300
    @slavdam2300 4 роки тому

    mind = blown

  • @AJ-fo3hp
    @AJ-fo3hp 3 роки тому

    This is looks like wavelet analysis, sum and difference

  • @NamaSaya-wg9gn
    @NamaSaya-wg9gn 5 років тому

    Finally

  • @TIO540S1
    @TIO540S1 11 місяців тому

    “Junk is very small…” hmmm…

  • @pranavsingh9284
    @pranavsingh9284 5 років тому

    u dont pre assume something u just go tep by step and do it

  • @gatitoconsueter
    @gatitoconsueter 5 років тому

    7:20 do you get it XD

  • @CaptainCalculus
    @CaptainCalculus 5 років тому

    Ross Taylor is always the 4th term

  • @xsunshine99_45
    @xsunshine99_45 5 років тому +1

    Right no this video has 110 likes and *ZERO* dislikes
    You have to be darn good to pull that off in 2019

  • @billgrant7262
    @billgrant7262 5 років тому

    taytay series

  • @kmac5912
    @kmac5912 5 років тому +1

    Please solve the infinite product of x=1 to infinity of cos(pi/(x+2))

  • @SR-kd4wi
    @SR-kd4wi 5 років тому +1

    Show Integration of 1/(x^x) from 0 to 1 =1.2....

  • @pranavsingh9284
    @pranavsingh9284 5 років тому

    u are don