A very nice olympiad question | How to solve (4 + \sqrt{5})^x + (4 - \sqrt{5})^× | Algebra |

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 326

  • @cemsentin
    @cemsentin 6 місяців тому +10

    (4+Sqrt15)^x+(4-Sqrt15)^x=62
    Due to (4-Sqrt15)*(4+Sqrt15)=1 or 4-Sqrt15=1/(4+Sqrt15),
    (4+Sqrt15)^x+[1/(4+Sqrt15)]^x=62
    (4+Sqrt15)^x+[(4+Sqrt15)^(-1)]^x=62
    (4+Sqrt15)^x+(4+Sqrt15)^(-x)=62
    After using y=(4+Sqrt15)^x, so
    y+1/y=62
    (y^2+1)/y=62
    y^2+1=62y
    y^2-62y+1=0
    Hence, y1=31-8Sqrt15 and y2=31+8Sqrt15 are solutions.
    1) For y=31-8Sqrt15,
    (4+Sqrt15)^x=31-8Sqrt15,
    (4+Sqrt15)^x=(4-Sqrt15)^2
    (4+Sqrt15)^x=[(4+Sqrt15)^(-1)]^2
    (4+Sqrt15)^x=(4+Sqrt15)^(-2)
    x1=-2 is solution.
    2) For y=31+8Sqrt15,
    (4+Sqrt15)^x=31+8Sqrt15
    (4+Sqrt15)^x=(4+Sqrt15)^2
    x2=2 is solution.

  • @AbasKial-fo5rp
    @AbasKial-fo5rp 2 місяці тому +6

    Verrrry verrrty good tank you🙏🙏🙏

  • @ujjaldasgupta4456
    @ujjaldasgupta4456 4 місяці тому +11

    Nicely you explained the problem.❤❤

  • @Hobbitangle
    @Hobbitangle 6 місяців тому +13

    Let a=4-√15 as a constant
    Then
    a^x+1/a^x=62
    Consider the following transformation
    (a^(x/2)+1/a^(x/2))^2=a^x+1/a^x+2=62+2=64
    so
    a^(x/2)+1/a^(x/2)=√64=8
    Let u=a^(x/2)
    u+1/u=8
    u²+1=8u
    u=(8±√(8²-4))/2=(8±√60)/2=4±√15
    (4+√15)^(x/2)=4±√15
    x/2=±1
    The answer:
    x=±2

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому +1

      That's a fantastic solution you have here.

  • @ndayehassan2627
    @ndayehassan2627 6 місяців тому +3

    I like the way you teach 🎉🎉

  • @johnstanley5692
    @johnstanley5692 4 місяці тому +13

    Easier? Define Z(n) = (x^n)+ 1/(x^n), Z(0)=2, then Z(n+1)= Z(n)Z(1) - Z(n-1). Here Z(1) = 8. Z(2) = Z(1)*Z(1)-Z(0) = 62. Hence n=2.

    • @Georg.Löding
      @Georg.Löding Місяць тому

      Not really. For we have two answers: n = 2; n = -2

  • @bkp_s
    @bkp_s 5 місяців тому +4

    You specifically are too great to praise. Really sir

  • @edwinwelch1393
    @edwinwelch1393 3 місяці тому +2

    Excellent. Thanks for this. Keep them coming.

  • @starthakog
    @starthakog Місяць тому +3

    I solved in 2 mints.
    I put those terms as roots of a quadratic equation. Then using the quadratic formula, formed the eqn, and luckily it worked on square.

  • @hanswust6972
    @hanswust6972 3 місяці тому +2

    Really nice trick, indeed; thanks!

  • @dujas2
    @dujas2 5 місяців тому +6

    I admit to lucking my way into a solution. Add 2 to both sides and take the square root and it becomes clear that x/2=1 works.

  • @labiamajora3903
    @labiamajora3903 4 місяці тому +1

    Thanks. You explained very nicely.

  • @IbraheemMatanmi
    @IbraheemMatanmi 6 місяців тому +2

    well done sir you make this problem so very easy

  • @maths01n
    @maths01n 3 дні тому +1

    Good work my fellow Mathematician ❤ keep up with the content I have subscribed

    • @SpencersAcademy
      @SpencersAcademy  2 дні тому +1

      Thank you! 😊. You're welcome aboard.

    • @maths01n
      @maths01n 2 дні тому

      @SpencersAcademy happy for you

  • @venkatesanr6758
    @venkatesanr6758 6 місяців тому +9

    Very complicated but extraordinary explanation. Thanks brother 🎉

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому +2

      I'm glad you enjoyed it.

    • @venkatesanr6758
      @venkatesanr6758 6 місяців тому

      I've one UA-cam channel, brother
      youtube.com/@venkatesanmathsacademy8904

  • @andrec.2935
    @andrec.2935 5 місяців тому +1

    Legal, muito bem explicado!

  • @fahadabdullah3046
    @fahadabdullah3046 5 місяців тому +1

    I look forward for more videos like this. Great job on the solution and explanation

  • @vitotozzi1972
    @vitotozzi1972 6 місяців тому +8

    Awesome!

  • @prince495
    @prince495 Місяць тому +2

    By hit and trial put x=2 it will be (a+b)^2 + (a-b)^2 which will be 2(a^2+b^2) which is 2*(4^2+√15^ 2)= 2*(16+15)= 2*31= 62 which statisfies so x=2

  • @1976anands
    @1976anands 4 місяці тому +4

    That was Smooth

  • @lornacy
    @lornacy Місяць тому +1

    Nicely explained

  • @varunmahurkar
    @varunmahurkar Місяць тому +3

    It will become super easy if we use "logarithmic with base 2" both side but before that we need to add 2 both side

  • @gwynj
    @gwynj 6 місяців тому +66

    That started pretty complicated. You can do it quickly by approximation. root 15 = bit less than root 16, = bit less than 4. so you got (bit less than 8) squared + (bit more than 0 squared) = 62. so x can only be 2, anything else is way too big, or way too small. i.e. 8^2 = 64 and 7^2 = 49. plus you're squaring so it can be +2 or -2.

    • @17-harshitbhatt57
      @17-harshitbhatt57 6 місяців тому +15

      Its not about the answer its about the process and out of the box thinking by this way you're killing the question itself.

    • @filipeoliveira7001
      @filipeoliveira7001 6 місяців тому +18

      This is not the point of the problem, the point is to learn how to reach the answer rigorously and mathematically. Also, how can you prove those are the only solutions? You can’t, which is why, in any real setting, you can’t approximate your way out of there

    • @mauriziograndi1750
      @mauriziograndi1750 6 місяців тому +3

      @@17-harshitbhatt57
      You’re pretty right. I was also criticising the long answers before, and the reason was that I didn’t know how to get to the answer systematically and proving it. Better I try to better myself and talk later. You are right here.

    • @AimeMadimba
      @AimeMadimba 6 місяців тому

      😊

    • @filipeoliveira7001
      @filipeoliveira7001 5 місяців тому

      @@Maran108???

  • @The2000Bobby
    @The2000Bobby 26 днів тому

    amazing!

  • @TariqHussain-u6c7j
    @TariqHussain-u6c7j 21 день тому

    Excellent ❤

  • @ellerychi2115
    @ellerychi2115 12 днів тому

    1 step: because 4+sqrt{15} near 8 and 4-sqrt{15}

  • @RahatFahmida
    @RahatFahmida 8 днів тому

    Thanks

  • @sudhirjoshi7782
    @sudhirjoshi7782 20 днів тому

    Nice work.

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 6 місяців тому +1

    It's easier to work the determinant of the quadratic equation in p as
    sqrt[(-62)²-4]=sqrt[(62)²-2²]
    =sqrt(64×60)
    =8×2sqrt(15)
    instead of squaring 62 then substracting with 4, having a sqrt of a large number.
    =(62+2)(62-2)
    =64(60)
    =8²2²15

  • @haihuang7529
    @haihuang7529 5 місяців тому +2

    I solve it in less than 5 minutes, found the same trick used. Thank you.

  • @jaybazu
    @jaybazu 4 місяці тому +1

    Great job...

  • @pure-mathematics
    @pure-mathematics 6 місяців тому +3

    Great 👍 job

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому

      I am grateful, man. Glad you enjoyed it.

  • @yurenchu
    @yurenchu 4 місяці тому +2

    Solve the equation
    (4+√15)^x + (4-√15)^x = 62
    Note that (4+√15) and (4-√15) are both positive, hence for real values of x , (4+√15)^x and (4-√15)^x exist and are also positive.
    Note also that (4+√15)(4-√15) = 4² - (√15)² = 16 - 15 = 1 , hence (4+√15) = 1/(4-√15) .
    Multiply both sides of the equation by (4-√15)^x :
    [(4+√15)^x] * (4-√15)^x + [(4-√15)^x] * (4-√15)^x = 62 * (4-√15)^x
    [(4+√15)(4-√15)]^x + [(4-√15)^x]² = 62 * (4-√15)^x
    [1]^x + [(4-√15)^x]² = 62 * (4-√15)^x
    ... substitute u = (4-√15)^x ...
    ... note: 1^x = 1 for any real x ...
    1 + u² = 62*u
    1 - 62u + u² = 0
    1 - 2*31u + u² = 0
    961 - 2*31u + u² = 960
    31² - 2*31u + u² = 64*15
    (31-u)² = 64*15
    31-u = ±8√15
    u = 31 ± 8√15
    ... remember u = (4-√15)^x ...
    (4-√15)^x = 31 ± 8√15
    x = ln(31 ± 8√15) / ln(4 - √15)
    Well, actually we can do better. Note that
    31 ± 8√15 =
    = 16 + 15 ± 2*4√15
    = (√16)² + (√15)² ± 2*(√16)*(√15)
    = (√16 ± √15)²
    = (4 ± √15)²
    Hence,
    (4 - √15)^x = 31 - 8√15
    (4 - √15)^x = (4 - √15)²
    x = 2
    and
    (4 - √15)^x = 31 + 8√15
    (4 - √15)^x = (4 + √15)²
    ... remember (4+√15) = 1/(4-√15) ...
    (4 - √15)^x = 1/(4-√15)²
    (4 - √15)^x = (4-√15)⁻²
    x = -2
    So there are two solutions: x = 2 and x = -2 .

  • @bgkim4843
    @bgkim4843 Місяць тому +2

    A=(4+15^1/2 )^x , B =(4- 15^1/2 )^x. Then AB =1, A+B=62. Therefore A, B are two solutions of x^2 -62x +1=0.

    • @ft7339
      @ft7339 Місяць тому

      .. And so what? We are looking for solutions for x?!

    • @bgkim4843
      @bgkim4843 Місяць тому

      @@ft7339 x= 31 + - sqrt(31^2 - 1)

  • @ManojkantSamal
    @ManojkantSamal Місяць тому +1

    Respected Sir, Good evening

  • @netravelplus
    @netravelplus 5 місяців тому +4

    Wonderful explanation.

  • @neilmccoy9390
    @neilmccoy9390 3 місяці тому +1

    Or, for integer x, every 2nd term of binomial expansion is cancelled out. Now try x=1 LHS=8. Now try x=2 LHS=16+15+16+15=62.

  • @paulbork7647
    @paulbork7647 18 днів тому

    One can quickly see that all the cross terms (terms containing V15) will cancel, so one can see only the squared terms count. These squared terms are the same for each of the squared expressions, so one can take either one and half the 62 to get 31. 16 (4 squared) plus 15 (V15 squared) is 31, so x is 2. QED

  • @neilmccoy9390
    @neilmccoy9390 3 місяці тому +1

    2nd term is reciprocal of 1st term. Let A=1st term. So A times eqn is AA+1=62A. So, we can use the quadratic formula to find the solutions.

  • @carlosrivas2012
    @carlosrivas2012 6 місяців тому

    Excelente. Bonito ejercicio....

  • @rubylyle5182
    @rubylyle5182 2 місяці тому

    Very intelligent

  • @Mb-logic
    @Mb-logic 5 місяців тому

    Wonderful ❤

  • @GretudeMenwube
    @GretudeMenwube 4 місяці тому +2

    Great job
    Keep it up
    I would like to see trigonometry and calculus olympiad

  • @TheSiddhartha2u
    @TheSiddhartha2u 4 місяці тому

    AWESOME

  • @mayaq8324
    @mayaq8324 4 місяці тому

    Entertaining!

  • @PC_Simo
    @PC_Simo 4 місяці тому +2

    Both answers worked; and, it seems to me that (a-b)^x = (a+b)^(-x); but I really need to explore that conjecture more, to verify it 👍🏻.

    • @yurenchu
      @yurenchu 4 місяці тому +1

      That's true only when a²-b² = 1 (which in this particular case, it is), so that (a-b)(a+b) = 1 .

  • @akshayaggarwal5148
    @akshayaggarwal5148 Місяць тому

    x=2,-2 did it in mind

  • @alexjunio_prof
    @alexjunio_prof 6 місяців тому +2

    Amazing

  • @michaeledwards2251
    @michaeledwards2251 6 місяців тому

    Inspection the number types of the equation reveals
    (a) 4 and 62 are rational numbers, (b) root(15) is irrational,
    (c) If x is non-integer, root(15)^x is irrational,
    (d) if root(15) is raised to an odd integer, the result is irrational,
    Showing x is an even integer.
    Inspecting the numerical values of the equation
    (a-b)^2 = a^2 -2ab + b^2, ignoring b^2 as a first approximation,
    Root(15) is (4 - delta)^2 giving approximately 16 - 8 delta = 15,
    making delta = 1/8 with an estimated error of 1/512. ((1/8)^2 /8)
    Substituting the approximation (4 - 1/8) for root(15) gives
    for the 1st bracket (approximately 8 - 1/8) and for the second bracket (approximately 1/8).
    Investigating the numbers
    1. Assume the 1st bracket is dominant, approximately 8.
    Applying even integer powers of x to 8 gives 8^2 = 64, 8^4 = 64^4.
    2. Assume the 2nd bracket is dominant, approximately 1/8.
    Applying even integer powers of x to 1/8 gives (1/8)^-2 = 64, (1/8)^-4 = 64^4
    (Dividing the log(left hand side)/log(right hand side), and take the nearest even integer as x for the general case.)
    In this instance x = 2 or -2.
    Substituting x =2 into the equation gives
    (a+b)^2 + (a-b)^2 = 2(a^2+b^2)
    substitute a = 4, b = root(15).
    2(16 + 15) = 62.

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому

      This is very impressive, I'm not gonna lie. You nailed it. 👏

    • @michaeledwards2251
      @michaeledwards2251 6 місяців тому

      @@SpencersAcademy
      At the Olympiad level, it is beatable,
      1. No proof (irrational number)^(irrational number) is irrational.
      2. No proof of why the approximation for root(15) gives the same numerical result as root(15) when delta^2 is ignored
      For example
      2((4)^2 + (4 - 1/8)^2 )= 2(16 + (16 -1 +1/64), which gives 62 - 1/64, ignoring delta^2, is 62.
      3. No back substitution of x = -2.

    • @michaeledwards2251
      @michaeledwards2251 6 місяців тому

      @@SpencersAcademy
      I would love to learn what the answers were to this questions in the Olympiad.
      With thanks for your appreciation.

  • @Maths-lf9ny
    @Maths-lf9ny Місяць тому +1

    Thinks

  • @kereric_c
    @kereric_c 6 місяців тому +2

    let p = 4+sqrt(15) ,q = 4- sqrt(15)
    then notice that p+q = 8,p-q=2sqrt(15),pq=1
    then notice that p^2+q^2={(p+q)^2+(p-q)^2}/2=62
    so x=2
    because pq =1 so x=-2 also satisfies the equation
    at the same time p=1/q
    f(x)=p^x+q^x=p^x+1/(p^x)
    when x>0 df(x)/dx >0
    when x

  • @antoniofaraone5754
    @antoniofaraone5754 4 місяці тому +2

    the solution for p has the sqrt of (62-2)*(62+2) =60*64=15*2^2*8^2 since there is a difference of squares under the sqrt....so there is no need for your leap of faith in placing a 15 under the sqrt, it comes by itself

  • @diogochadudmilagres4533
    @diogochadudmilagres4533 2 місяці тому

    1) Expand both binomial in Newton bonimal
    2) Note that most of them cancel each other
    OBS: Consider x natural and test for x = {0,1, 2, 3, 4, ...} At least i tried 🙂

  • @taherismail5425
    @taherismail5425 6 місяців тому

    That was more than wonderful, and the explanation and interpretation are very excellent. Allah ❤bless your beautiful thinking. What a beauty in algebra and mathematics. Thank you, dear professor.

    • @SpencersAcademy
      @SpencersAcademy  5 місяців тому +1

      I am really grateful for this. I'll continue to do my best, Sir.

  • @user.275.E.L.
    @user.275.E.L. Місяць тому

    👏👏👏

  • @Fengwunna100
    @Fengwunna100 Місяць тому

    New commer sir

  • @VictorPensioner
    @VictorPensioner 4 місяці тому +1

    Let
    a = (4 + √15) ^ (x/2)
    b = (4 - √15) ^ (x/2)
    Tnen
    a² + b² = 62
    Calc
    (a + b)² = a² + b² + 2ab = 62 + 2 = 64 => (a+b) = 8 (because a, b > 0)
    Has the system
    a² + b² = 62
    a + b = 8
    Find (a-b)
    (a-b)² = a² + b² - 2ab = 62 - 2 = 60
    Therefore
    (1) a + b = 8
    (2) a - b = ±2√15

    From (1) and (2)
    2a = 8 ±2√15
    or
    a = 4 ± √15
    or
    (4 + √15) ^ (x/2) = 4 ± √15
    case 1.
    (4 + √15) ^ (x/2) = 4 + √15 => (x/2) = 1 => x = 2 is solution
    case 2
    (4 + √15) ^ (x/2) = 4 - √15
    or
    [ (4+ √15)(4-√15)/(4-√15)]^(x/2) = 4 - √15
    or
    [1/(4-√15)]^(x/2) = 4 - √15
    or
    (4-√15)^(-x/2) = 4-√15 => (-x/2) = 1 => x = -2 is solution
    All solutions are
    x = ±2

  • @desirouspubg6329
    @desirouspubg6329 6 місяців тому

    Saw the same question in Nust entry test past papers, couldn't figure it out. Now I know it.

  • @enesyldz5994
    @enesyldz5994 5 місяців тому +31

    Bruh. Why all these channels solve really easy questions and say them olympiad question. Please solve "real" olympiad questions.

    • @Aobix
      @Aobix 4 місяці тому

      Do you know any channel which actually solve olympiad level question

    • @cookiemonster-nk3xb
      @cookiemonster-nk3xb 4 місяці тому

      Dude do you want a slap? Shut up and keep stepping..my man the professor has this channel under control.

    • @lolszakjak7420
      @lolszakjak7420 4 місяці тому +1

      Polish AGH olympiad is really hard

    • @johnencinas4250
      @johnencinas4250 3 місяці тому +1

      Same method applies, as illustrated

    • @vasilesinescu84
      @vasilesinescu84 Місяць тому

      I agree. Too easy, why not using a title such as solving easy exponential equations instead of words such as Olympiad

  • @hubertpruvost3271
    @hubertpruvost3271 6 місяців тому

    Now i understand the -2 solution

  • @Bokery1000
    @Bokery1000 6 місяців тому

    Brilliant!!

  • @Limited_Light
    @Limited_Light 5 місяців тому +1

    Multiplying both sides by (4 - sqrt(15))^x:
    (4 + sqrt(15))^x * (4 - sqrt(15))^x + (4 - sqrt(15))^x * (4 - sqrt(15))^x = 62 * (4 - sqrt(15))^x.
    ((4 + sqrt(15)) * (4 - sqrt(15)))^x + ((4 - sqrt(15))^x)^2 = 62 * (4 - sqrt(15))^x.
    1^x + ((4 - sqrt(15))^x)^2 = 62 * (4 - sqrt(15))^x.
    1 + ((4 - sqrt(15))^x)^2 = 62 * (4 - sqrt(15))^x.
    Let u = (4 - sqrt(15))^x.
    1 + u^2 = 62 * u.
    u = 31 + 8 sqrt(15) or u = 31 - 8 sqrt(15).
    x = log_[4 - sqrt(15)](31 + 8 sqrt(15)) or x = log_[4 - sqrt(15)](31 - 8 sqrt(15)).
    (4 - sqrt(15))^2 = 16 - 2 * 4 * sqrt(15) + (sqrt(15))^2 = 16 - 8 * sqrt(15) + 15 = 31 - 8 * sqrt(15).
    So, in the latter case, x = log_[4 - sqrt(15)](31 - 8 sqrt(15)) = log_[4 - sqrt(15)]((4 - sqrt(15))^2) = 2.
    In the former case, x = log_[4 - sqrt(15)](31 + 8 sqrt(15)) = log_[4 - sqrt(15)]((4 + sqrt(15))^2) = ln((4 + sqrt(15))^2) / ln(4 - sqrt(15)) = ln((4 + sqrt(15))^2) / ln((4 + sqrt(15))^(-1)) = 2 * ln(4 + sqrt(15)) / (-1 * ln(4 + sqrt(15))) = -2.

    • @SpencersAcademy
      @SpencersAcademy  5 місяців тому +1

      Excellent delivery

    • @Limited_Light
      @Limited_Light 5 місяців тому

      Thank you. ​@@SpencersAcademyWould it be ok for me to upload my own version?

  • @SivaB-g7h
    @SivaB-g7h Місяць тому +1

    Guessed in less than 1second 😎😎😎 x=2

    • @Anu55203
      @Anu55203 22 дні тому

      You wont get marks for guessing. You have to solve it.

    • @kareolaussen819
      @kareolaussen819 19 днів тому

      You missed the solution x=-2.

  • @BrawlN64
    @BrawlN64 3 місяці тому

    4+sqrt(15)^x
    4+sqrt(16-1)^x
    x=4
    1/62(x^2-sqrt(2)sqrt(x^2-1)^2)^y=1
    62=(4^2-(sqrt(2)sqrt(4^2-1))^2)^y
    Close to 1.8

  • @enternamehere._.
    @enternamehere._. 6 місяців тому

    I like how didnt search any math but i learnt this today from myteacher and now it gets recommended to me

  • @AlexMarkin-w6c
    @AlexMarkin-w6c 6 місяців тому +4

    f(x)=(4 + sqrt(15))^x + (4 - sqrt(15))^x is symmetrical around x=0. This is easy enough to show that f(x)=f(-x). Also, f(x) is continuous for all x. Therefore, graphs of f(x) and y=62 interest twice. An obvious solution is x=2 f(2)=62, then the second solution for the symmetrical function f(x) around x=0 is x=-2. Solutions: x=-2, x=2.

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому +1

      You're absolutely correct. I like your approach.

    • @boredomgotmehere
      @boredomgotmehere 5 місяців тому

      Your reply is awesome but I do have some questions: How did you know the graph is symmetrical around x=0? Also, how did you figure that the obvious solution of x = 2, is 62? Hope you don’t mind replying. Thanks in advance.

    • @AlexMarkin-w6c
      @AlexMarkin-w6c 5 місяців тому +1

      @@boredomgotmehere This is a known result to me that a function of the form f(x)= (a+sqrt(b))^x +(a-sqrt(b))^x is even. It can be verified that f(x)=f(-x) in two lines. So f(x) is symmetrical. x=2 being a solution is also obvious to me by looking at the equation. Also, in my past experience, such school exercises as this one, often have one simple solution. If x=2, and x=-2 for a symmetrical function, then the axis of symmetry is x=0.

    • @boredomgotmehere
      @boredomgotmehere 5 місяців тому

      @@AlexMarkin-w6c I see your point. Thanks for the explanation.

  • @KingGisInDaHouse
    @KingGisInDaHouse 6 місяців тому +2

    I multiplied everything by (4+sqrt(15)) and lucked out on getting 1^x then getting your quadratic equation and instead of doing your guessing process I did (4+sqrt15)^x=31- sqrt(960) I treated it as a logarithmic equation

    • @plucas2003
      @plucas2003 6 місяців тому

      same and it was easier but i didn't get the -2

  • @hellgodghost7224
    @hellgodghost7224 5 днів тому

    2(a²+b²)=(a+b)²+(a-b)²=62
    So, X= 2
    Easy

  • @ashwanibeohar8172
    @ashwanibeohar8172 6 місяців тому +2

    Root 15 is closed तो root16 ie 4(लिटिल less than4)
    So let put value 4 इन place of 4
    (4+4)^ x +0 = 62
    For x= 2, lhs become 64 which is close to 62.
    Now let us check the given eqn with x = 2,
    (4 + _ /15)^2 + ( 4 - _/15)^2
    = 2( a^2 + b^2)
    = 2( 16+ 15)
    = 62
    =rhs
    So x=2 is the ans

  • @marcgriselhubert3915
    @marcgriselhubert3915 4 місяці тому

    f(x) = (4+sqrt(15))^x + (4 -sqrt(15))^x
    As 4-sqrt(15) = 1/(4+sqrt(15) , we have f(x) = a^x + a^-x,
    with a = 4 +sqrt(15), so f(x) = f (-x) for any real x
    So, if x is solution of f(x) = 62, then -x is also solution.
    The function f strictly increases on R+, so if the equation f(x) = 62 has a solution on R+, then it is unique.
    Now, as x =2 is evident solution, it is the unique solution on R+, and thanks to the initial remark: -2 is the unique solution on R-.
    Conclusion: x = 2 or x = -2 are the only solutions.

  • @billwong6714
    @billwong6714 6 місяців тому

    Very clever!

  • @mintprathomkrumint4499
    @mintprathomkrumint4499 5 місяців тому +1

    You can use 62^2-2^2
    =(60)(64) in the square root. It might be easier.

    • @shmuelzehavi4940
      @shmuelzehavi4940 4 місяці тому

      Exactly. It might be much easier. How could he miss such an elementary point ?!

    • @noname-ed2un
      @noname-ed2un 4 місяці тому

      Can you explain this a little bit more

    • @shmuelzehavi4940
      @shmuelzehavi4940 4 місяці тому

      @@noname-ed2un An elementary algebraic identity is:
      a^2 - b^2 = (a - b) (a + b)
      Substitute: a = 62 , b = 2 and you'll get:
      62^2 - 2^2 = (62 - 2) (62 + 2) = (60) (64)
      Have a nice day !

  • @CLAYTONIANKE
    @CLAYTONIANKE Місяць тому

    x = 0 ===>> 1 + 1 = 62 (F)
    x = 1 ===> 4 + 4 = 62 (F)
    x = 2 ===> 30 + 32 = 62 (V)
    S = {2}

  • @adophmadondo7660
    @adophmadondo7660 6 місяців тому +2

    Where did the plus sign inbetween brackects vanish to? We can use difference of square method ignoring a plus inbetween.

    • @romeob8607
      @romeob8607 6 місяців тому

      You're thinking too hard.

    • @Cyclic727
      @Cyclic727 6 місяців тому

      You don't get the solution

    • @herbertwandha6110
      @herbertwandha6110 6 місяців тому +1

      You are a wonderful prof.....keep it up to help many young aspiring mathematicians.....sholom

  • @zdenekpavlas3566
    @zdenekpavlas3566 5 місяців тому +2

    I'm slow, but this is way too slow for me.

  • @imandiudupihilla6400
    @imandiudupihilla6400 6 місяців тому

    amaizing

  • @olga23bmb
    @olga23bmb 5 місяців тому

    Super cool 👌👍

  • @sitarsbi
    @sitarsbi 4 місяці тому

    Simple answer 2

  • @ManojkantSamal
    @ManojkantSamal 3 місяці тому

    X=2
    2{(4)^2+(root 15)^2}
    =2(16+15)=62

  • @thientran4948
    @thientran4948 5 місяців тому

    From 31+8V15 =(4+V15)^x .Just using a^x = b = > x = (logb)/loga . Sub number yield x = 2. Save a lot of time.

    • @AnkhArcRod
      @AnkhArcRod 5 місяців тому

      Yeah, but you get 50% credit only since -2 is also an answer. That too is obvious once you know the answer!

    • @MathsOnlineVideos
      @MathsOnlineVideos 3 місяці тому

      And how do you get the other solution of x = - 2..?

  • @taiwoolajire8297
    @taiwoolajire8297 6 місяців тому +4

    Nice 🎉

  • @masoudghiaci5483
    @masoudghiaci5483 6 місяців тому +1

    ❤❤❤❤❤

  • @bvsprasad5070
    @bvsprasad5070 5 місяців тому

    62square-4, could have been written as (62+2)(62-2)=8square*4*15

  • @KhinMaungSan-qc9uv
    @KhinMaungSan-qc9uv 2 місяці тому

    Approximation method,x=2 insertion can be easy.But if the question x=more than 10,you need more difficult tackling.

  • @walterwen2975
    @walterwen2975 6 місяців тому

    A very nice Olympiad question: (4 + √15)ˣ + (4 - √15)ˣ = 62; x = ?
    Let: a = 4 + √15, b = 4 - √15, ab = 16 - 15 = 1; a = 1/b, b = 1/a
    a² + b² = (1/b)² + (1/a)² = a⁻² + b⁻² = (4 + √15)² + (4 - √15)²
    = 2(16 + 15) = 62 = (4 + √15)ˣ + (4 - √15)ˣ; x = 2 or x = - 2
    Answer check:
    x = ± 2: (4 + √15)ˣ + (4 - √15)ˣ = 62; Confirmed as shown
    Final answer:
    x = 2 or x = - 2

  • @harris5140
    @harris5140 9 днів тому

    By inspection, 62= 15 + 15+ 16 +16, so x=2.

  • @hakanerci4372
    @hakanerci4372 2 місяці тому

    (4 + roo15) ² + (4-root15)²=2(16+15)=62 so x=2

  • @carlinhosnascida
    @carlinhosnascida 5 місяців тому

    Thank you

  • @Sieger44
    @Sieger44 4 місяці тому

    You should explain 1^x always makes 1.

    • @SpencersAcademy
      @SpencersAcademy  4 місяці тому +1

      1 reased to any power is 1. Hence, 1^x = 1.

  • @maximus0610
    @maximus0610 Місяць тому

    In. Korea. Middle. School.

  • @ZwickyFGAFDGC-f8m
    @ZwickyFGAFDGC-f8m Місяць тому

    x=2 16+16+30=62
    x=-2 1/(31+8√15)+1/(31-8√15)
    =31-8√15+31+8√15=62
    x=±2

  • @dougr.2398
    @dougr.2398 4 місяці тому

    You’ve missed out in or omitted what can be generalized in this set of techniques that can be applied to other problems

    • @dougr.2398
      @dougr.2398 4 місяці тому

      (There are no “tricks” in mathematics, only techniques!)

  • @SuezireKaka
    @SuezireKaka 6 місяців тому

    I started from 62=2×(4^2+15) which means x=2 is a solution. Then I reformed the problem like p^x+p^(-x)=62, so I found -2 is also another solution. Considering the shape of cosh, these are the only solutions in real number. I have no idea in complex number :|

  • @corteztt518
    @corteztt518 3 місяці тому

    62/log8 is the answer

  • @zvonimirkujundzic6867
    @zvonimirkujundzic6867 4 місяці тому

    Your coleque show this before a few days here! Didnt you see it?!

  • @Gamingmous992
    @Gamingmous992 4 місяці тому

    Use hit and trial method first put x=1 and then 2

  • @SageCog801-zl1ue
    @SageCog801-zl1ue 4 місяці тому

    There has to a way to further simplify this even the working out.

  • @swarajrath9412
    @swarajrath9412 Місяць тому

    2

  • @achalmunot5527
    @achalmunot5527 5 місяців тому

    Just do rationalisation of 4-root15

  • @laogui2425
    @laogui2425 22 дні тому

    p+1/p=62 is obvious after the first step since (4+sqrt(15))(4-sqrt(15))=1
    or (4+sqrt(15)) = 1/ (4+sqrt(15)) so the quadratic is immediate in 2 steps
    Far too much beating about the bush, way too many redundant steps.
    The other thing that is obvious is that 1< max(x)