Russian Math Olympiad | A Very Nice Geometry Problem

Поділитися
Вставка
  • Опубліковано 23 січ 2025

КОМЕНТАРІ • 106

  • @dmitrymelnik8296
    @dmitrymelnik8296 9 місяців тому +14

    Let ABC = \alpha. Apparently, the triangle OCB is isosceles with two sides equal to R, and the angle between them is (180 - 2*alpha). We can either invoke the cosine theorem, or recognize that BC = 2* R*cos(\alpha). From EOB we find cos(\alpha) = \sqrt(2/3). The rest is arithmetic.

  • @varathan3558
    @varathan3558 9 місяців тому +8

    at 7:40 it simpliest to draw the CA line and take cos(OBE)=cos(ABC)! The solution just appears in front of you!

  • @hongningsuen1348
    @hongningsuen1348 9 місяців тому +9

    One method to solve the problem is to use proportionality equation for corresponding sides of similar triangles ACB (constructed) and EBO after finding radius of the semicircle.
    Notes for students:
    Whenever you see a semicircle, equal radii and Thales theorem should come to your mind.
    Whenever you see right-angled triangles, Pythagoras theorem and similarity of triangles hence proportionality equation of corresponding sides should come to your mind.

  • @contnuum1607
    @contnuum1607 7 місяців тому +9

    ABC is right angled triangle with angle C = 90 deg. OE = sqrt(5) => OD = sqrt(10) = radius => AB = diameter = 2 X OD = 2sqrt(10).
    Since ABC is right angled triangle with angle(ACB) = 90 deg => BC = AB X cos(angle(ABC)) = 2 X sqrt(10) X sqrt(10/15) = 2 X sqrt(4 X 5/3) = 4/3 X sqrt(15)

    • @hoehlengnarf7496
      @hoehlengnarf7496 6 місяців тому

      I think you left out one step: angle(ABC) = angle(OBE) and angle at O (in OBE) is 90°, hence cos(angle(ABC)) = cos(angle(OBE)) = sqrt(10) / sqrt(15) = sqrt(10/15). I would also consider this easier than the argument in the video as I must admit I don't know (or at least I don't remember) the theorem applied to the lines involving M and N.

    • @venkateswararaokotaru4302
      @venkateswararaokotaru4302 5 місяців тому

      Good 👍 .

    • @venkateswararaokotaru4302
      @venkateswararaokotaru4302 5 місяців тому

      After getting OE=√5 , RADIUS OD=OA= OB=√10 and BE=√15 , We Have ∆ABC ~ ∆EBO Give us BC/AB=OB/BE So BC = (2√10)×√10/√15 = 4/3 √15 .

  • @RAG981
    @RAG981 9 місяців тому +23

    For the ending I used similar triangles ABC and EBO rather than chord properties. It was simpler to do.

    •  9 місяців тому +5

      I did this same way 😁

    • @HCHLEE2007
      @HCHLEE2007 7 місяців тому +1

      Yes much simpler

    • @mohamadmehdimotamed4485
      @mohamadmehdimotamed4485 2 місяці тому

      از تشابه دو مثلث OEB و ACB به حالت دو زاویه برابر زودتر به جواب میرسیم .(زاویه B در هر دو مشترک ،زاویه O و C هم برابر 90 درجه.

  • @MorgKev
    @MorgKev 9 місяців тому +3

    Also by intersecting chords: DE.DE = CE.EB... this is marginally quicker and a bit less messy.

  • @jonpress6773
    @jonpress6773 9 місяців тому +3

    Use coordinate geometry, placing the O at the origin. The equation of the circle is x^2 + y^2 = 10. It's easy to determine the coordinates of points B and E from the givens, so use them to find the equation of line BCm which turns out to be y=x/sqrt(2) + sqrt(5). Solve the two equations together to get the coordinates of point C, which turns out to be (-sqrt(10)/3, 4/3 sqrt(5)). Now we have the coordinates of B and C, so the distance formula gives the answer. Not as elegant as Math Booster's solution, but it still works.

    • @BartvandenDonk
      @BartvandenDonk 5 місяців тому

      It is far more elegant than his solution. 😉

  • @jandirpassos5327
    @jandirpassos5327 8 місяців тому +2

    I bounced the square to the right side and applied the same properties as the final part of the solution used in the video.

  • @magdyeldajany9973
    @magdyeldajany9973 5 місяців тому

    Extend the chord DE to intersect the circle at point L. From the two chords CB and DL, we can find CE

  • @kateknowles8055
    @kateknowles8055 4 місяці тому

    (r - sqrt(5))(r+sqrt(5)) = r.r -5 with OE produced to the circumference at G so that OG = radius =r. Now if EO is produced also to meet a reflection (H) of G in diameter AB,
    the product HE.EG is the r.r-5 mentioned at the start. HE.EG = ED.ED by the intersection of HG and the chord DE extended.
    so r.r -5=5 so r.r =10 so r=sqrt(10)
    Now to notice that CE.EB also = ED.ED by intersection of chords so this is 5 also
    From triangle OBE, Pythagoras' theorem gives : EB.EB = OB.OB+ OE.OE = r.r + 5 = 15
    CE = 5/sqrt(15) EB = sqrt(15) so BC = 5/sqrt(15) + sqrt(15) = 5/15 times (sqrt(15) ) +(15/15) sqrt ( 15 ) = 4/3 of sqrt (15)

  • @tgx3529
    @tgx3529 5 місяців тому

    This problem can also be solved by older students with the help of Thalet's circle - the angle at C is right.
    The Pythagorean theorem gives
    40= k^2+(z+sqrt15)^2
    where k is the line connecting point C to the diameter.
    sinα is in the small triangle
    sqrt5/sqrt15=sqrt3/3
    sin's theorem for a right triangle above the diameter gives
    sinα/k=sin90/2sqrt10...
    it leads to the same result of sqrt(80/3)-sqrt15 for the shorter segment of the unknown segment.

  • @tituschirila7650
    @tituschirila7650 9 місяців тому +2

    after finding BE you can find height from O to BE = OP (equaling area of triangle OBE) and from that half of CB (OP perpendicular from center divides OB by two) and from that by pythagora PB. PB is hlf BE - simple as that.

    • @ST-sd8un
      @ST-sd8un 9 місяців тому

      Excelente!
      OP (raíz 15)= (raíz 5)(raíz 10)
      OP= [(raíz 5)(raíz 10)]/[(raíz 5)(raíz 3)]
      OP= raíz 10/raíz 3
      OP=(raíz 30)/3
      Pitagoras
      BP^2 + [(raíz 30)/3]^2 = (raíz 10)^2
      BP^2 = 10 - (30/9)
      BP^2 = 60/9
      BP= 2(raíz 15)/3
      BC = 2 BP
      BC = 4 (raíz 15)/3

  • @lusalalusala2966
    @lusalalusala2966 6 місяців тому

    Draw a perpendicular line to CB from O, which intersects it at the midpoint T since CB is a chord. Next the area of the triangle OEB is sqrt(10)*sqrt(5)/2 =EB*OT/2. Therefor OT= sqrt(10)*sqrt(5)/sqrt(15)=sqrt(10/3). Finally CB=2 TB, where TB=sqrt(OB^2-OT^2)=sqrt(10-10/3)=sqrt(20/3)=2sqrt(5/3), ie., CB=4sqrt(5/3).

  • @JamesCalabut
    @JamesCalabut 6 місяців тому +1

    Triangle BOE is similar to BCA, so sqrt(15)/sqrt(10) = 2*sqrt(10)/x. Thus x=2*10/sqrt(15). Simplifying: x=2*10*sqrt(15)/15=4/3*sqrt(15)

  • @MrPaulc222
    @MrPaulc222 7 місяців тому

    r = sqrt(10) as it's the square's diagonal.
    sqrt(5)^2 + sqrt(10)^2 = (EB^2, so EB = sqrt(15)
    BCA and BEO are congruent.
    (EB)/(OB) = (AB)/(CB)
    Call (CB), x as it's the target value.
    (sqrt(15))/(sqrt(10)) = (2*sqrt(10)/x
    Cross multiply: (sqrt(10)) * (2*sqrt(10)) = (sqrt(15)*x
    20 = (sqrt(15)*x
    400 = 15x^2
    Reduce: 80 = 3x^2
    (80/3) = x^2
    (sqrt(80))/(sqrt(3) = x.
    Rationalise to (sqrt(240))/3 = x
    Simplify: (4*sqrt(15))/3 = x
    I have 5.164(rounded to 3dp)

  • @timc5768
    @timc5768 9 місяців тому +2

    Perhaps also:
    By similar triangles DFA and BFD ( equivalent to using intersecting chords theorem, I think):
    [r +sqrt(5))/sqrt(5) = (sqrt(5))/[r - sqrt(5)], where 'r = radius',
    so ' r^2 - 5 = 5', and 'r = sqrt(10)', so BE = sqrt(15) , (by Pythag), and 'AB = 2sqrt(10)'
    Then by similar triangles EOB and ACB : [OB/BE) = [CB/BA] , (= cos(B)), so
    CB = [2sqrt(10)][{sqrt(10)}/sqrt(15)}] = 2sqrt(20/3) = 4sqrt(5/3) = (4/3)sqrt(15)

    • @TheAndreArtus
      @TheAndreArtus 9 місяців тому

      That is the same way I went with it.

  • @bakrantz
    @bakrantz 6 місяців тому +1

    Triangle ABC is a right triangle and similar to triangle BOE. So X can be solved for by similarity.

  • @marcgriselhubert3915
    @marcgriselhubert3915 9 місяців тому

    The side length of the square is sqrt(5) and the radius of the circle is sqrt(2).sqrt(5) = sqrt(10)
    We us an orthonormal, center O, first axis (OB). The equation of the circle is x^2 + y^2 = 10
    We have B(sqrt(10);0) and E(0; sqrt(5)), then VectorBC(-sqrt(10); sqrt(5)) is colinear to VectorU(-sqrt(2); 1)
    The equation of (BE) is: (x -sqrt(10)).(1) - (y).(-sqrt(2)) = 0 or x + sqrt(2).y -sqrt(10) = 0, or x= -sqrt(2).y +sqrt(10)
    C is the intersection of (BE) and the circle, the ordinate of C is such as: (-sqrt(2).y +sqrt(10))^2 + y^2 = 10, or 3.y^2 -4.sqrt(5).y = 0
    So the ordinate of C is (4.sqrt(5))/3, and its abscissa is -sqrt(2). (4.sqrt(5))/3) + sqrt(10) = (-4.sqrt(10))/3 + sqrt(10) = -sqrt(10)/3
    Finally we have C(-sqrt(10)/3; (4.sqrt(5))/3) and Vector BC(-4.sqrt(10))/3; (4.sqrt(5))/3) and BC^2 = 160/9 + 80/9 = 240/9
    Finally BC = sqrt(240)/3 = (4.sqrt(15))/3.

  • @jpl569
    @jpl569 9 місяців тому +5

    Here is another proof… Let H be the projection of C on AB, and ß the angle EBO (also CBH). Obviously, the radius of the circle is R = √10.
    Then tg ß = √5 / √10 = 1 / √2, and sin ß = CH/X, and cos ß = R/BE.
    And also : tg ß = CH / BH.
    As angle COH is 2ß (nice property of the circle !), then :
    X = CH / sin ß = R sin 2 ß / sin ß = 2 R cos ß = 2 R^2 / BE.
    Then X = 2 . 10 / √15 = 4 √15 / 3.
    Thank you for your videos !! 🙂

  • @ExpressStaveNotation
    @ExpressStaveNotation 9 місяців тому

    Extend DE to make the chord that intersects with chord BC.
    R5.r5 = BE.EC
    5 = r15.EC
    EC = 5/r15
    BC = 5/r15 + r15.

  • @DB-lg5sq
    @DB-lg5sq 2 місяці тому

    شكرا لكم على المجهودات
    يمكن استعمال
    (cosB)^2=5/4r^2
    X^2=(2r)^2 (1+2cos2B)
    = 2(2r)^2(cosB)^2
    X^2= 10

  • @hongningsuen1348
    @hongningsuen1348 9 місяців тому

    Method 1 using Thales theorem and similar triangles:
    1. Let BC be x.
    2. Side of square OEDF = √5 (property of square)
    Hence diagonal of square OD = √[(√5)^2 + (√5)^2)] = √10 (Pythagoras theorem)
    Hence AO = BO = OD = √10 (radii of semicircle)
    3. Draw AC to form ∆ABC.
    Angle ACD = 90 (Thales theorem)
    4. In ∆ACD
    AC^2 = AB^2 - BC^2 (Pythagoras theorem)
    = (AO + BO)^2 - x^2
    = (√10 + √10)^2 - x^2
    = 40 - x^2
    AC = √(40 - x^2)
    5. ∆ABC ~ ∆EBO (AAA)
    Hence AC/EO = BC/BO
    [√(40 - x^2)]/√5 = x/√10
    (40 - x^2) = x^2/2
    3x^2 = 80
    x^2 = 80/3
    x = √80/√3 = (√3√80)/3 = √3 √(16 x 5)/3 = (4√15)/3
    Method 2 using intersecting chord theorem:
    1. Side of square OEDF = √5 (property of square)
    Hence diagonal of square OD = √[(√5)^2 + (√5)^2)] = √10 (Pythagoras theorem)
    Hence AO = BO = OD = √10 (radii of semicircle)
    2. In ∆BOE
    BE^2 = BO^2 + OE^2
    = 10 + 5
    BE = √15
    3. Extend DE to G on arc BC to form chord DG.
    DE = GE = √5 (OE is perpendicular bisector of chord DG from centre.)
    4. For chords BC and DG intersecting at E
    DE x GE = BE x EC (intersecting chord theorem)
    √5 x √5 = √15 x EC
    Hence EC = √(5/3)
    5. BC = BE + EC
    = √15 + √(5/3)
    = (4√15)/3

  • @yadonghu6219
    @yadonghu6219 8 місяців тому

    连接A,C;三角形ACB为直角三角形。直角三角形ACB与EOB相似,对应边成比例。BC:sqrt(10)=2*sqrt(10):sqrt(15)。BC=20/sqrt(15)。

  • @quigonkenny
    @quigonkenny 9 місяців тому

    Let r be the radius of the circle and s be the side length of the square.
    As square OEDF has area 5, its side length is the square root of that area, or √5.
    Draw radius OD. In addition to being a radius of the semicircle, OD is also a diagonal of the square. As such, it's length is √2 times the side length.
    r = √2•√5 = √10.
    Triangle ∆EOB:
    EO² + OB² = BE²
    (√5)² + (√10)² = BE²
    BE² = 5 + 10 = 15
    BE = √15
    Draw CA. As C is on the circumference of the semicircle and is the angle between the ends of the diameter AB, ∠ C = 90°. As ∆EOB and ∆BCA share angle ∠B and are both right triangles, ∆EOB and ∆BCA are similar.
    Triangle ∆BCA:
    BC/AB = OB/BE
    BC/2√10 = √10/√15 = √2/√3
    BC = (2√10)(√2/√3)
    BC = 4√5/√3 = 4√15/3 ≈ 5.164

  • @whoskiana
    @whoskiana 2 місяці тому

    you can also solve this by similarity, can't you? Triangle EOB ~ ACB (ACB=EOB=90° and EBO is common), from there you can find BC

  • @MarieAnne.
    @MarieAnne. 6 місяців тому

    My solution started out the same
    Find side length of square = √5
    Find radius of circle = √10
    Find length of BE = √15
    But instead of completing the circle, I joined A to B to form △ABC
    We find that △ABC ~ △EBO by AA
    ∠ACB = 90° (angle subtended by diameter = 90°) and ∠EOB = 90°
    ∠ABC = ∠EBO (same angle)
    Using similar triangles we get:
    BC/BO = AB/EB
    BC/√10 = 2√10/√15
    *BC = 20/√15 = 4√15/3*

  • @plamenpenchev262
    @plamenpenchev262 6 місяців тому

    Put the same square to the right. Chord property then
    Sqrt(15)×|CE| = sqrt(5)×sqrt(5)
    Then sqrt(15) + sqrt(15)/3

  • @dlspark7965
    @dlspark7965 8 місяців тому

    BC = (4/3)*sqrt(3A)
    where A = Area of square OEDF

  • @kaistmechanic
    @kaistmechanic Місяць тому

    If you use the similarity condition of a triangle, it's much easier to find the answer

  • @감나빗-26
    @감나빗-26 8 місяців тому +1

    닮음을 이용하면 선분 BC의 중점을 M이라 했을 때 선분 EB:선분OB=선분OB:선분BM이므로 선분 BM의 길이는 sqrt(20/3) 선분 BC의 길이는 4sqrt(5/3)임을 알 수 있습니다

  • @zdrastvutye
    @zdrastvutye 9 місяців тому

    i have calculated repeatedly the deviation of point c from the circle with interpolation:
    10 print "mathbooster-russian math olympiad":a1=5:l1=sqr(a1)
    20 dim x(3,2),y(3,2):r=l1*sqr(2):xb=2*r:yb=0:yd=l1:@zoom%=1.4*@zoom%
    30 xd=r-sqr(r*r-yd^2):xe=xd+l1:ye=yd:xb=2*r:yb=0:ye=l1:sw=.1:goto 70
    40 dxk=(xe-xb)*k:xc=xb+dxk:dyk=(ye-yb)*k:yc=yb+dyk
    50 dgu1=(xc-r)^2/a1:dgu2=yc^2/a1:dgu3=r*r/a1:dg=dgu1+dgu2-dgu3
    60 return
    70 k=sw:gosub 40
    80 dg1=dg:k1=k:k=k+sw:k2=k:gosub 40:if dg1*dg>0 then 80
    90 k=(k1+k2)/2:gosub 40:if dg1*dg>0 then k1=k else k2=k
    100 if abs(dg)>1E-10 then 90
    110 lg=sqr((xc-xb)^2+(yc-yb)^2):print "der abstand BC="; lg
    120 x(0,0)=xd:y(0,0)=0:x(0,1)=x(0,0)+l1:y(0,1)=0:x(0,2)=xd:y(0,2)=l1
    130 x(1,0)=x(0,0)+l1:y(1,0)=0:x(1,1)=x(1,0):y(1,1)=l1:x(1,2)=xd:y(1,2)=yd
    140 x(2,0)=xe:y(2,0)=ye:x(2,1)=xc:y(2,1)=yc:x(2,2)=xd:y(2,2)=yd
    150 x(3,0)=r:y(3,0)=0:x(3,1)=2*r:y(3,1)=0:x(3,2)=xe:y(3,2)=ye
    160 masx=1000/2*r:masy=700/r:if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @grzegorzmordas9134
    @grzegorzmordas9134 7 місяців тому +1

    The radius of the circle is Sqrt(2x5) = Sqrt(10). Triangles BEO and ABC are similar. Thus: OB/BE=AB/BC or r/Sqrt(r^2+5) = x/2r. Substituting r=Sqrt(10) we get: Sqrt(10)/Sqrt(15) = x/2Sqrt(10), hence: x=20/Sqrt(15) = 4Sqrt(15)/3.

  • @maxgladkikh2326
    @maxgladkikh2326 6 місяців тому +1

    Я помню эту задачу! 9 класс советской школы, 40 лет назад. Почти все справились без затруднений. Как она может быть олимпиадной?

  • @vcvartak7111
    @vcvartak7111 9 місяців тому +2

    You can also join AC and ACB and BOE are similar triangles and take side proportion

  • @venkateswararaokotaru4302
    @venkateswararaokotaru4302 5 місяців тому +1

    After getting OE=√5 , RADIUS OD=OA= OB=√10 and BE=√15 , We Have ∆ABC ~ ∆EBO Give us BC/AB=OB/BE So BC = (2√10)×√10/√15 =(4/3) √15 .

  • @KipIngram
    @KipIngram 4 місяці тому

    When I mention x and y coordinates, it is with the center of the circle taken as origin. The square has side length sqrt(5), so the circle has radius sqrt(2)*sqrt(5)=sqrt(10). So the angle X makes with the horizontal axis at B is arctan(sqrt(5)/sqrt(10)) = arctan(1/sqrt(2)). We can now use the law of sines to get the vertical coordinate of C:
    2*y(C)/sin(2*arctan(1/sqrt(2)) = 2*sqrt(10)
    y(C) = sqrt(10)*sin(2*arctan(1/sqrt(2))
    y(C) = 2.9814
    Now we can use these facts to get the x coordinate of C:
    2.9814/(sqrt(10)-x) = 1/sqrt(2)
    sqrt(10)-x = 2.9814*sqrt(2)
    x = sqrt(10) - 2.9814*sqrt(2)
    x = -1.0541
    Finally we can use the Pythagorean theorem to get X:
    X^2 = (sqrt(10)+1.0541)^2 + (2.9814)^2
    X^2 = 26.666
    X = 5.1640
    Q.E.D.

  • @TyyylerDurden
    @TyyylerDurden 2 місяці тому

    I found BC through the similarity between the right triangle CAB (it is right because its hype is the circle's diameter) and the triangle OEB. 20/root 15

  • @TheCodeFather254
    @TheCodeFather254 11 днів тому

    Why not create the line AC and use trigonometry to solve for CB?

  • @اقرء
    @اقرء 7 місяців тому

    Tanks for watching

  • @michaelsanders2655
    @michaelsanders2655 17 годин тому

    I used a different method with similar triangles without drawing the circle, but somewhat similar. Answer 5.16

  • @InventPeace1
    @InventPeace1 5 місяців тому

    Did they leave out of the description that " O " was the bisection point of AB ? InventPeaceNotWar

  • @gaylespencer6188
    @gaylespencer6188 9 місяців тому +1

    Found angle CBA. Then took Cos (CBA) and multiplied it by the diameter of (2*10^.5) = 5.16......

  • @murdock5537
    @murdock5537 8 місяців тому

    φ = 30°; area ∎DFOE = 5 → FO = a = √5 → DO = a√2 = r = √10
    ∆ ABC → sin(BCA) = 1 → AB = 2r
    ∆ BEO → EO = r/√2; BO = r → BE = r√6/2 → ABC = δ →
    cos⁡(δ) = 2r/r√6 = √6/3 = BC/2r → BC = 4√15/3

  • @alexeygourevich6967
    @alexeygourevich6967 7 місяців тому

    Радиус окр-ти DO = √2 * DE = √2 * √5 = √10 = ОВ.
    Пусть угол ЕВО равен β. Тогда tgβ =√5/ √10 = 1/√2.
    Но треуг АСВ - прямоугольный с углом С=π/2, поэтому АС/СВ = tgβ = 1/√2.
    Также AC^2+ CВ^2 = (2√10)^2 = 40, отсюда, поделив на CВ^2, получим
    (1/√2)^2 + 1 = 40/ CВ^2, или 3/2 = 40/ CВ^2, отсюда CВ^2 = 80/3, т.е.
    CВ = √(80/3) = √(16*5/3) = 4* √((3*5)/(3*3)) = 4*√15 / 3.

  • @santiagoarosam430
    @santiagoarosam430 9 місяців тому

    a²=5→ a=√5→ r= Diagonal del cuadrado =a√2=√5√2=√10→ EB²=(√5)²+(√10)²=15→ EB=√15→ Si G es la proyección ortogonal de O sobre EB y h=OG→ h√15=√5√10→ h=√50/√15 → Razón de semejanza entre los triángulos ACB y OGB = s=AB/OB=2r/r=2→ AC=2h→ CB²=AB²-AC²=(2r)²-(2h)²=(2√10)²-(2√50/√15)²→ CB=20√15/15 =4√15/3.
    Gracias y saludos.

  • @user-gn4mq5cs6e
    @user-gn4mq5cs6e 8 місяців тому

    Drop a perpendicular on X, it will cut at x/2 and calculate X straight away

  • @joyhuang7845
    @joyhuang7845 8 місяців тому

    有另一左右對稱正方形,畫出來之後,也是利用圓內幕性質,即可求出EC

  • @georiashang1120
    @georiashang1120 7 місяців тому

    R=BO=DO=CO=FE=√10 ;
    EO=√5 ;
    cos(∠EBO)=√2/√3 ;
    BC*(1/2)=2√5/√3 ;
    BC=4√5/√3=4√15/3

  • @mg.1044
    @mg.1044 6 місяців тому

    metot 2 ACB ~ OEB sin ß = CB /2r = r/ EB

  • @marioalb9726
    @marioalb9726 6 місяців тому +1

    A = ½R² = 5 cm²
    R = √10 cm
    tan α = s/R = √5 / √10 = 1/√2
    α = 35,26°
    x = 2R cos α
    x = 5,164 cm ( Solved √ )

  • @JPTaquari
    @JPTaquari 6 місяців тому

    I did it by triangulation and then by similarity of triangles and arrived at 5.24228. I must have rounded up a little. Nice exercise, congratulations
    From Brasil !

  • @retarody9542
    @retarody9542 5 місяців тому

    Cos of tria = √10 / √15
    2r = 2√10
    X = cos x 2r = 4√15 / 3

  • @sakibalmahmud686
    @sakibalmahmud686 6 місяців тому

    Triangle ABC and Triangle OBE symmetric.. Then OBE is fully known..then ABC aslo known..from that..

  • @constantinfedorov2307
    @constantinfedorov2307 8 місяців тому +1

    Я не очень понимаю, как такая элементарная задачка могла попасть на олимпиаду. В условии дано все - радиус известен, это диагональ квадрата, отрезок BE тоже считается тривиально (стороны EO = √5 OB = √10 => BE = √15), и дальше опять тривиальное подобие треугольников ABC и EBO. BC/AB = OB/EB; BC = (2√10)√(10/15) = (4/3)√15;
    Тут олимпиадой и не пахнет, на ЕГЭ бывают задачи сложнее.

  • @احمدالجوهر-ظ4ت
    @احمدالجوهر-ظ4ت 7 місяців тому

    OB×AB=CB×EB
    ACB right angled

  • @1ciricola
    @1ciricola 9 місяців тому

    The radius of the circle is the length of line segment DO, which is √10 , since the length of each side of the square is √5. A line drawn between C and O likewise has a length of √10
    ΔCOB is an isosceles triangle. Since line segments EO and OB are known [√5 & √10 respectively], arctan .707 = 35.26°
    The isosceles triangle has two angles of 35.26° ∠CBO and ∠BCO
    The Altitude bisects the base BC at M. The length of each half can be calculated using the cosine function.
    Cos 35.26° = BM/BO = BM/√10
    (.816)(√10) = BM = 2.58, length of BC = (2)(BM) = 5.16

  • @UrievJackal
    @UrievJackal 8 місяців тому

    We don't really know, which level of math, this Olympiad demands.
    Therefore, when first time I used a sine for BOE triangle, maybe I was wrong. Maybe children of that Olympiad may not know of trigonometry.
    So the best solution is to use similar triangles BOE and BCA at the end. Thus, BO/BE = x/AB; R/BE = x/2R.

  • @shoebmd428
    @shoebmd428 7 місяців тому

    Triangle ACB and OEB are similar, , it could have saved some steps

  • @tamirerez2547
    @tamirerez2547 6 місяців тому

    Very nice solution 👍

  • @GraeTheGreat-zl9us
    @GraeTheGreat-zl9us 7 місяців тому

    What app he using???

  • @michallesz2
    @michallesz2 8 місяців тому

    IF BD=R then AO=OB and OD=R ERROR

  • @himadrikhanra7463
    @himadrikhanra7463 8 місяців тому

    14+ 4root 5....? Line construction...similarly...diameter...Pythagoras

  • @ivantatarchuk697
    @ivantatarchuk697 7 місяців тому

    Why OD is the radius of semi circle?

    • @cabinetdecuriositestechniq3059
      @cabinetdecuriositestechniq3059 7 місяців тому

      Yes, why is it the radius ? The entire demonstration is based on this false premise.

    • @LukovaMadubo
      @LukovaMadubo 6 місяців тому

      A distance from the centre to the circumference of the circle is having a name,it is called RADIUS

    • @cabinetdecuriositestechniq3059
      @cabinetdecuriositestechniq3059 6 місяців тому

      @@LukovaMadubo ...the supposed center of the circle. Nothing shows that O is the center of the circle. Therefore, OD is not the radius.

    • @ivantatarchuk697
      @ivantatarchuk697 6 місяців тому

      @@LukovaMadubo Sorry. I haven't noticed that O is the center.

  • @MYldrm
    @MYldrm 2 місяці тому

    Five ore pipe?

  • @Cricketdoctor_1999
    @Cricketdoctor_1999 9 місяців тому +1

    🤙Nice geometry problem bro!...

  • @inventionssimpleexpression7694
    @inventionssimpleexpression7694 3 місяці тому

    Trigonometri kulnarak çözmek daha pratik ve şık

  • @감나빗-26
    @감나빗-26 8 місяців тому

    is this for 8grade students?

  • @wiwa1962
    @wiwa1962 9 місяців тому

    |FD| = |OF| = sqrt(5)
    |OD| = r = sqrt(5) x sqrt(2) = sqrt (10)
    |BE| =sqrt (sqrt(10))^2 + (sqrt(5))^2) = sqrt(15)
    P(triangle) OBE = 1/2 x |OB| x |OE| = 5/2sqrt(2) and P(triangle) OBE = 1/2 x h(trangle BOE) x |BE| = 5/2sqrt(2) => h(trangle BOE) = 1/3 x sqrt(30)
    |OB| = |OC| = r = sqrt(10) => r^2 = (h (trangle BOE))^2 +(1/2 x |BC| )^2 => |BC| = 4/3 x sqrt(15)

  • @SGuerra
    @SGuerra 4 місяці тому

    Uau! Que questão bonita. Eu encontrei uma solução um pouco diferente. Parabéns pela escolha!!! Brasil - setembro de 2024.

  • @pepe_valitor487
    @pepe_valitor487 Місяць тому +1

    &.Square OEDF:
    5=(side)² > side=√5
    side=OE=ED=DF=FO=√5
    __ __ __
    &.∆ODFrect: OF=DF=√5 ; OD=r=rad
    __ __ __
    (Teor.Pithag.) OD²=OF²+DF²
    __
    OD²=(√5)²+(√5)²=2(√5)²=2•5=10
    __
    OD=√10=r
    __ __
    &.∆ACBrect: AB=2r=2√10 ; CB=x
    __ __
    &.∆EOBrect: OE=√5 ; OB=√10
    __ __ __
    (T.Pythag.) EB²=OE²+OB²
    __
    EB²=(√5)²+(√10)²=5+10=15
    __
    EB=√15
    &.∆ACB~∆EOB. (similar∆, propiedad AAA)
    __ __ __ __
    AB/CB=EB/OB
    __ __ __ __
    AB=2√10 ; CB=x ; EB=√15 ; OB=√10
    (2•√10)/x=(√15)/√10
    2•(√10)•√10=x•√15 > 2•(√10)²=x•√15
    2•10=x•√15 > 20=x•√15 > x=20/√15
    x=(20•√15)/(√15•√15)=(20•√15)/15
    _______________________
    x=(4•√15)/3=~5.16cm✔️ 👍
    _______________________

  • @cya3mdirl158
    @cya3mdirl158 7 місяців тому +1

    10:05 not obvious

  • @vrcfncpdci
    @vrcfncpdci 5 місяців тому

    A good problemi for mr. perrelman the russian genius

  • @just_isaac15
    @just_isaac15 5 місяців тому

    To the people who are stating other methods, I am so jealous😭😭

  • @Dauooria
    @Dauooria 9 місяців тому

    매일 매일 재미있는 수학 영상을 올려주셔서 감사합니다!
    I'm korean student

  • @alamshaikhahmad2415
    @alamshaikhahmad2415 9 місяців тому

    5×5=25×4=100sqrooth=10

  • @WlodekCiejkaTV
    @WlodekCiejkaTV 8 місяців тому

    There is much simpler solution.
    Angle ACB is 90
    =› triangles ABC and BOE are similar
    =› OB/EB=CB/AB
    =› CB=AB*OB/EB
    =› CB=2√10*√10/√15=20/√15=4√15/3.
    Result the same but solution more elegat.

  • @ΓΕΩΡΓΙΟΣΔΟΥΖΕΝΗΣ-χ9κ
    @ΓΕΩΡΓΙΟΣΔΟΥΖΕΝΗΣ-χ9κ 7 місяців тому

    There is another way of doing it simplified yielding the same resault.

  • @RafaelCardoso-gu6pq
    @RafaelCardoso-gu6pq 8 місяців тому

    Mel, o cara que erra essa aí não acerta nem o local de prova

  • @Misha-g3b
    @Misha-g3b 8 місяців тому

    2, -2, 2i, -2i.

  • @sergovoy
    @sergovoy 7 місяців тому

    Корневая труба)))

  • @GUIDORAFAEL2304
    @GUIDORAFAEL2304 6 місяців тому

    Show!

  • @chimaths-class
    @chimaths-class 8 місяців тому

    Great

  • @flastkchance5312
    @flastkchance5312 7 місяців тому

    Turkish children are given only 2 minutes to solve this.

  • @mehmeteglen1521
    @mehmeteglen1521 9 місяців тому

    10 bence bir dakika sürmedi

  • @sorourhashemi3249
    @sorourhashemi3249 4 місяці тому

  • @RK-tf8pq
    @RK-tf8pq 4 місяці тому

    Do proper video editing before presenting.

  • @wasimahmad-t6c
    @wasimahmad-t6c 6 місяців тому

    10

  • @wasimahmad-t6c
    @wasimahmad-t6c 4 місяці тому

    5×1.4142135624=7.07×7.07=50×3.14159268=157.07-10×10=57.07÷4=14.2699

  • @amritpatel3794
    @amritpatel3794 4 місяці тому

    You took long rout.
    The angle ACB is 90* , since it lie within semi circle. and EOB is also 90*.
    So both triangle ABC & EBC are similar triangles.
    And you are done !!!