Russian Math Olympiad | A Very Nice Geometry Problem

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 105

  • @hongningsuen1348
    @hongningsuen1348 7 місяців тому +7

    One method to solve the problem is to use proportionality equation for corresponding sides of similar triangles ACB (constructed) and EBO after finding radius of the semicircle.
    Notes for students:
    Whenever you see a semicircle, equal radii and Thales theorem should come to your mind.
    Whenever you see right-angled triangles, Pythagoras theorem and similarity of triangles hence proportionality equation of corresponding sides should come to your mind.

  • @dmitrymelnik8296
    @dmitrymelnik8296 7 місяців тому +14

    Let ABC = \alpha. Apparently, the triangle OCB is isosceles with two sides equal to R, and the angle between them is (180 - 2*alpha). We can either invoke the cosine theorem, or recognize that BC = 2* R*cos(\alpha). From EOB we find cos(\alpha) = \sqrt(2/3). The rest is arithmetic.

  • @varathan3558
    @varathan3558 7 місяців тому +8

    at 7:40 it simpliest to draw the CA line and take cos(OBE)=cos(ABC)! The solution just appears in front of you!

  • @contnuum1607
    @contnuum1607 5 місяців тому +9

    ABC is right angled triangle with angle C = 90 deg. OE = sqrt(5) => OD = sqrt(10) = radius => AB = diameter = 2 X OD = 2sqrt(10).
    Since ABC is right angled triangle with angle(ACB) = 90 deg => BC = AB X cos(angle(ABC)) = 2 X sqrt(10) X sqrt(10/15) = 2 X sqrt(4 X 5/3) = 4/3 X sqrt(15)

    • @hoehlengnarf7496
      @hoehlengnarf7496 4 місяці тому

      I think you left out one step: angle(ABC) = angle(OBE) and angle at O (in OBE) is 90°, hence cos(angle(ABC)) = cos(angle(OBE)) = sqrt(10) / sqrt(15) = sqrt(10/15). I would also consider this easier than the argument in the video as I must admit I don't know (or at least I don't remember) the theorem applied to the lines involving M and N.

    • @venkateswararaokotaru4302
      @venkateswararaokotaru4302 3 місяці тому

      Good 👍 .

    • @venkateswararaokotaru4302
      @venkateswararaokotaru4302 3 місяці тому

      After getting OE=√5 , RADIUS OD=OA= OB=√10 and BE=√15 , We Have ∆ABC ~ ∆EBO Give us BC/AB=OB/BE So BC = (2√10)×√10/√15 = 4/3 √15 .

  • @RAG981
    @RAG981 7 місяців тому +23

    For the ending I used similar triangles ABC and EBO rather than chord properties. It was simpler to do.

    •  7 місяців тому +5

      I did this same way 😁

    • @HCHLEE2007
      @HCHLEE2007 5 місяців тому +1

      Yes much simpler

    • @mohamadmehdimotamed4485
      @mohamadmehdimotamed4485 2 дні тому

      از تشابه دو مثلث OEB و ACB به حالت دو زاویه برابر زودتر به جواب میرسیم .(زاویه B در هر دو مشترک ،زاویه O و C هم برابر 90 درجه.

  • @jpl569
    @jpl569 7 місяців тому +5

    Here is another proof… Let H be the projection of C on AB, and ß the angle EBO (also CBH). Obviously, the radius of the circle is R = √10.
    Then tg ß = √5 / √10 = 1 / √2, and sin ß = CH/X, and cos ß = R/BE.
    And also : tg ß = CH / BH.
    As angle COH is 2ß (nice property of the circle !), then :
    X = CH / sin ß = R sin 2 ß / sin ß = 2 R cos ß = 2 R^2 / BE.
    Then X = 2 . 10 / √15 = 4 √15 / 3.
    Thank you for your videos !! 🙂

  • @DB-lg5sq
    @DB-lg5sq 18 днів тому

    شكرا لكم على المجهودات
    يمكن استعمال
    (cosB)^2=5/4r^2
    X^2=(2r)^2 (1+2cos2B)
    = 2(2r)^2(cosB)^2
    X^2= 10

  • @jonpress6773
    @jonpress6773 7 місяців тому +3

    Use coordinate geometry, placing the O at the origin. The equation of the circle is x^2 + y^2 = 10. It's easy to determine the coordinates of points B and E from the givens, so use them to find the equation of line BCm which turns out to be y=x/sqrt(2) + sqrt(5). Solve the two equations together to get the coordinates of point C, which turns out to be (-sqrt(10)/3, 4/3 sqrt(5)). Now we have the coordinates of B and C, so the distance formula gives the answer. Not as elegant as Math Booster's solution, but it still works.

    • @BartvandenDonk
      @BartvandenDonk 3 місяці тому

      It is far more elegant than his solution. 😉

  • @MorgKev
    @MorgKev 6 місяців тому +3

    Also by intersecting chords: DE.DE = CE.EB... this is marginally quicker and a bit less messy.

  • @hongningsuen1348
    @hongningsuen1348 7 місяців тому

    Method 1 using Thales theorem and similar triangles:
    1. Let BC be x.
    2. Side of square OEDF = √5 (property of square)
    Hence diagonal of square OD = √[(√5)^2 + (√5)^2)] = √10 (Pythagoras theorem)
    Hence AO = BO = OD = √10 (radii of semicircle)
    3. Draw AC to form ∆ABC.
    Angle ACD = 90 (Thales theorem)
    4. In ∆ACD
    AC^2 = AB^2 - BC^2 (Pythagoras theorem)
    = (AO + BO)^2 - x^2
    = (√10 + √10)^2 - x^2
    = 40 - x^2
    AC = √(40 - x^2)
    5. ∆ABC ~ ∆EBO (AAA)
    Hence AC/EO = BC/BO
    [√(40 - x^2)]/√5 = x/√10
    (40 - x^2) = x^2/2
    3x^2 = 80
    x^2 = 80/3
    x = √80/√3 = (√3√80)/3 = √3 √(16 x 5)/3 = (4√15)/3
    Method 2 using intersecting chord theorem:
    1. Side of square OEDF = √5 (property of square)
    Hence diagonal of square OD = √[(√5)^2 + (√5)^2)] = √10 (Pythagoras theorem)
    Hence AO = BO = OD = √10 (radii of semicircle)
    2. In ∆BOE
    BE^2 = BO^2 + OE^2
    = 10 + 5
    BE = √15
    3. Extend DE to G on arc BC to form chord DG.
    DE = GE = √5 (OE is perpendicular bisector of chord DG from centre.)
    4. For chords BC and DG intersecting at E
    DE x GE = BE x EC (intersecting chord theorem)
    √5 x √5 = √15 x EC
    Hence EC = √(5/3)
    5. BC = BE + EC
    = √15 + √(5/3)
    = (4√15)/3

  • @jandirpassos5327
    @jandirpassos5327 6 місяців тому +2

    I bounced the square to the right side and applied the same properties as the final part of the solution used in the video.

  • @MarieAnne.
    @MarieAnne. 4 місяці тому

    My solution started out the same
    Find side length of square = √5
    Find radius of circle = √10
    Find length of BE = √15
    But instead of completing the circle, I joined A to B to form △ABC
    We find that △ABC ~ △EBO by AA
    ∠ACB = 90° (angle subtended by diameter = 90°) and ∠EOB = 90°
    ∠ABC = ∠EBO (same angle)
    Using similar triangles we get:
    BC/BO = AB/EB
    BC/√10 = 2√10/√15
    *BC = 20/√15 = 4√15/3*

  • @MrPaulc222
    @MrPaulc222 5 місяців тому

    r = sqrt(10) as it's the square's diagonal.
    sqrt(5)^2 + sqrt(10)^2 = (EB^2, so EB = sqrt(15)
    BCA and BEO are congruent.
    (EB)/(OB) = (AB)/(CB)
    Call (CB), x as it's the target value.
    (sqrt(15))/(sqrt(10)) = (2*sqrt(10)/x
    Cross multiply: (sqrt(10)) * (2*sqrt(10)) = (sqrt(15)*x
    20 = (sqrt(15)*x
    400 = 15x^2
    Reduce: 80 = 3x^2
    (80/3) = x^2
    (sqrt(80))/(sqrt(3) = x.
    Rationalise to (sqrt(240))/3 = x
    Simplify: (4*sqrt(15))/3 = x
    I have 5.164(rounded to 3dp)

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 7 місяців тому +1

    As in all Geometrical Problems, the Real Problem is: Where to look?
    In this particular case one must look to Line OD and understand that the Diagonal of the Square is equal to the Radius of the Semicircle.
    So, if the side of the Square is equal to sqrt(5); (sqrt(5) * sqrt(5) = 5; then its Diagonal is equal D^2 = sqrt5)^2 + sqrt(5)^2. D^2 = 5 + 5 = 10. So, Diagonal is equal to sqrt(10) ~ 3,2 Linear Units.
    Note that the Diagonal of any Square is always equal to : D = Side*sqrt(2). In this case sqrt(5) * sqrt(2) = sqrt(10); as staed before!!
    Radius = sqrt(10)
    and,
    EB^2 = 5 + 10 ; EB^2 = 15 ; EB = sqrt(15) ~ 3,9 lin un
    By the Theorem of Similarity between Triangles we have :
    BO/EB = BC'/BC : C' is the Middle Point between OF
    sqrt(10) / sqrt(15) = (sqrt(10) + (sqrt(5)/2) / BC
    3,16/3,87 = (3,16 + 1,12) / BC
    0,82 = 4,28 / BC
    BC = 4,28/0,82
    BC = 5,22 Linear Units, approximately.

    • @mickodillon1480
      @mickodillon1480 7 місяців тому +2

      Exactly. I missed that somehow! Therefore I found it really hard.

    • @LuisdeBritoCamacho
      @LuisdeBritoCamacho 7 місяців тому

      @@mickodillon1480 , don't worry. Be happy!

  • @kateknowles8055
    @kateknowles8055 2 місяці тому

    (r - sqrt(5))(r+sqrt(5)) = r.r -5 with OE produced to the circumference at G so that OG = radius =r. Now if EO is produced also to meet a reflection (H) of G in diameter AB,
    the product HE.EG is the r.r-5 mentioned at the start. HE.EG = ED.ED by the intersection of HG and the chord DE extended.
    so r.r -5=5 so r.r =10 so r=sqrt(10)
    Now to notice that CE.EB also = ED.ED by intersection of chords so this is 5 also
    From triangle OBE, Pythagoras' theorem gives : EB.EB = OB.OB+ OE.OE = r.r + 5 = 15
    CE = 5/sqrt(15) EB = sqrt(15) so BC = 5/sqrt(15) + sqrt(15) = 5/15 times (sqrt(15) ) +(15/15) sqrt ( 15 ) = 4/3 of sqrt (15)

  • @marcgriselhubert3915
    @marcgriselhubert3915 7 місяців тому

    The side length of the square is sqrt(5) and the radius of the circle is sqrt(2).sqrt(5) = sqrt(10)
    We us an orthonormal, center O, first axis (OB). The equation of the circle is x^2 + y^2 = 10
    We have B(sqrt(10);0) and E(0; sqrt(5)), then VectorBC(-sqrt(10); sqrt(5)) is colinear to VectorU(-sqrt(2); 1)
    The equation of (BE) is: (x -sqrt(10)).(1) - (y).(-sqrt(2)) = 0 or x + sqrt(2).y -sqrt(10) = 0, or x= -sqrt(2).y +sqrt(10)
    C is the intersection of (BE) and the circle, the ordinate of C is such as: (-sqrt(2).y +sqrt(10))^2 + y^2 = 10, or 3.y^2 -4.sqrt(5).y = 0
    So the ordinate of C is (4.sqrt(5))/3, and its abscissa is -sqrt(2). (4.sqrt(5))/3) + sqrt(10) = (-4.sqrt(10))/3 + sqrt(10) = -sqrt(10)/3
    Finally we have C(-sqrt(10)/3; (4.sqrt(5))/3) and Vector BC(-4.sqrt(10))/3; (4.sqrt(5))/3) and BC^2 = 160/9 + 80/9 = 240/9
    Finally BC = sqrt(240)/3 = (4.sqrt(15))/3.

  • @zdrastvutye
    @zdrastvutye 7 місяців тому

    i have calculated repeatedly the deviation of point c from the circle with interpolation:
    10 print "mathbooster-russian math olympiad":a1=5:l1=sqr(a1)
    20 dim x(3,2),y(3,2):r=l1*sqr(2):xb=2*r:yb=0:yd=l1:@zoom%=1.4*@zoom%
    30 xd=r-sqr(r*r-yd^2):xe=xd+l1:ye=yd:xb=2*r:yb=0:ye=l1:sw=.1:goto 70
    40 dxk=(xe-xb)*k:xc=xb+dxk:dyk=(ye-yb)*k:yc=yb+dyk
    50 dgu1=(xc-r)^2/a1:dgu2=yc^2/a1:dgu3=r*r/a1:dg=dgu1+dgu2-dgu3
    60 return
    70 k=sw:gosub 40
    80 dg1=dg:k1=k:k=k+sw:k2=k:gosub 40:if dg1*dg>0 then 80
    90 k=(k1+k2)/2:gosub 40:if dg1*dg>0 then k1=k else k2=k
    100 if abs(dg)>1E-10 then 90
    110 lg=sqr((xc-xb)^2+(yc-yb)^2):print "der abstand BC="; lg
    120 x(0,0)=xd:y(0,0)=0:x(0,1)=x(0,0)+l1:y(0,1)=0:x(0,2)=xd:y(0,2)=l1
    130 x(1,0)=x(0,0)+l1:y(1,0)=0:x(1,1)=x(1,0):y(1,1)=l1:x(1,2)=xd:y(1,2)=yd
    140 x(2,0)=xe:y(2,0)=ye:x(2,1)=xc:y(2,1)=yc:x(2,2)=xd:y(2,2)=yd
    150 x(3,0)=r:y(3,0)=0:x(3,1)=2*r:y(3,1)=0:x(3,2)=xe:y(3,2)=ye
    160 masx=1000/2*r:masy=700/r:if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @tgx3529
    @tgx3529 3 місяці тому

    This problem can also be solved by older students with the help of Thalet's circle - the angle at C is right.
    The Pythagorean theorem gives
    40= k^2+(z+sqrt15)^2
    where k is the line connecting point C to the diameter.
    sinα is in the small triangle
    sqrt5/sqrt15=sqrt3/3
    sin's theorem for a right triangle above the diameter gives
    sinα/k=sin90/2sqrt10...
    it leads to the same result of sqrt(80/3)-sqrt15 for the shorter segment of the unknown segment.

  • @tituschirila7650
    @tituschirila7650 7 місяців тому +2

    after finding BE you can find height from O to BE = OP (equaling area of triangle OBE) and from that half of CB (OP perpendicular from center divides OB by two) and from that by pythagora PB. PB is hlf BE - simple as that.

    • @ST-sd8un
      @ST-sd8un 7 місяців тому

      Excelente!
      OP (raíz 15)= (raíz 5)(raíz 10)
      OP= [(raíz 5)(raíz 10)]/[(raíz 5)(raíz 3)]
      OP= raíz 10/raíz 3
      OP=(raíz 30)/3
      Pitagoras
      BP^2 + [(raíz 30)/3]^2 = (raíz 10)^2
      BP^2 = 10 - (30/9)
      BP^2 = 60/9
      BP= 2(raíz 15)/3
      BC = 2 BP
      BC = 4 (raíz 15)/3

  • @timc5768
    @timc5768 7 місяців тому +2

    Perhaps also:
    By similar triangles DFA and BFD ( equivalent to using intersecting chords theorem, I think):
    [r +sqrt(5))/sqrt(5) = (sqrt(5))/[r - sqrt(5)], where 'r = radius',
    so ' r^2 - 5 = 5', and 'r = sqrt(10)', so BE = sqrt(15) , (by Pythag), and 'AB = 2sqrt(10)'
    Then by similar triangles EOB and ACB : [OB/BE) = [CB/BA] , (= cos(B)), so
    CB = [2sqrt(10)][{sqrt(10)}/sqrt(15)}] = 2sqrt(20/3) = 4sqrt(5/3) = (4/3)sqrt(15)

    • @TheAndreArtus
      @TheAndreArtus 7 місяців тому

      That is the same way I went with it.

  • @lusalalusala2966
    @lusalalusala2966 4 місяці тому

    Draw a perpendicular line to CB from O, which intersects it at the midpoint T since CB is a chord. Next the area of the triangle OEB is sqrt(10)*sqrt(5)/2 =EB*OT/2. Therefor OT= sqrt(10)*sqrt(5)/sqrt(15)=sqrt(10/3). Finally CB=2 TB, where TB=sqrt(OB^2-OT^2)=sqrt(10-10/3)=sqrt(20/3)=2sqrt(5/3), ie., CB=4sqrt(5/3).

  • @marioalb9726
    @marioalb9726 4 місяці тому +1

    A = ½R² = 5 cm²
    R = √10 cm
    tan α = s/R = √5 / √10 = 1/√2
    α = 35,26°
    x = 2R cos α
    x = 5,164 cm ( Solved √ )

  • @quigonkenny
    @quigonkenny 7 місяців тому

    Let r be the radius of the circle and s be the side length of the square.
    As square OEDF has area 5, its side length is the square root of that area, or √5.
    Draw radius OD. In addition to being a radius of the semicircle, OD is also a diagonal of the square. As such, it's length is √2 times the side length.
    r = √2•√5 = √10.
    Triangle ∆EOB:
    EO² + OB² = BE²
    (√5)² + (√10)² = BE²
    BE² = 5 + 10 = 15
    BE = √15
    Draw CA. As C is on the circumference of the semicircle and is the angle between the ends of the diameter AB, ∠ C = 90°. As ∆EOB and ∆BCA share angle ∠B and are both right triangles, ∆EOB and ∆BCA are similar.
    Triangle ∆BCA:
    BC/AB = OB/BE
    BC/2√10 = √10/√15 = √2/√3
    BC = (2√10)(√2/√3)
    BC = 4√5/√3 = 4√15/3 ≈ 5.164

  • @ExpressStaveNotation
    @ExpressStaveNotation 7 місяців тому

    Extend DE to make the chord that intersects with chord BC.
    R5.r5 = BE.EC
    5 = r15.EC
    EC = 5/r15
    BC = 5/r15 + r15.

  • @murdock5537
    @murdock5537 6 місяців тому

    φ = 30°; area ∎DFOE = 5 → FO = a = √5 → DO = a√2 = r = √10
    ∆ ABC →sin(BCA) = 1 → AB = 2r
    ∆ BEO → EO = r/√2; BO = r → BE = r√6/2 → ABC = δ →
    cos⁡(δ) = 2r/r√6 = √6/3 = BC/2r → 3BC = 2r√6 → BC = (2/3)r√6 = 4√15/3

  • @JamesCalabut
    @JamesCalabut 4 місяці тому +1

    Triangle BOE is similar to BCA, so sqrt(15)/sqrt(10) = 2*sqrt(10)/x. Thus x=2*10/sqrt(15). Simplifying: x=2*10*sqrt(15)/15=4/3*sqrt(15)

  • @grzegorzmordas9134
    @grzegorzmordas9134 5 місяців тому +1

    The radius of the circle is Sqrt(2x5) = Sqrt(10). Triangles BEO and ABC are similar. Thus: OB/BE=AB/BC or r/Sqrt(r^2+5) = x/2r. Substituting r=Sqrt(10) we get: Sqrt(10)/Sqrt(15) = x/2Sqrt(10), hence: x=20/Sqrt(15) = 4Sqrt(15)/3.

  • @magdyeldajany9973
    @magdyeldajany9973 3 місяці тому

    Extend the chord DE to intersect the circle at point L. From the two chords CB and DL, we can find CE

  • @감나빗-26
    @감나빗-26 6 місяців тому +1

    닮음을 이용하면 선분 BC의 중점을 M이라 했을 때 선분 EB:선분OB=선분OB:선분BM이므로 선분 BM의 길이는 sqrt(20/3) 선분 BC의 길이는 4sqrt(5/3)임을 알 수 있습니다

  • @bakrantz
    @bakrantz 3 місяці тому +1

    Triangle ABC is a right triangle and similar to triangle BOE. So X can be solved for by similarity.

  • @venkateswararaokotaru4302
    @venkateswararaokotaru4302 3 місяці тому +1

    After getting OE=√5 , RADIUS OD=OA= OB=√10 and BE=√15 , We Have ∆ABC ~ ∆EBO Give us BC/AB=OB/BE So BC = (2√10)×√10/√15 =(4/3) √15 .

  • @dlspark7965
    @dlspark7965 6 місяців тому

    BC = (4/3)*sqrt(3A)
    where A = Area of square OEDF

  • @whoskiana
    @whoskiana 12 днів тому

    you can also solve this by similarity, can't you? Triangle EOB ~ ACB (ACB=EOB=90° and EBO is common), from there you can find BC

  • @alexeygourevich6967
    @alexeygourevich6967 5 місяців тому

    Радиус окр-ти DO = √2 * DE = √2 * √5 = √10 = ОВ.
    Пусть угол ЕВО равен β. Тогда tgβ =√5/ √10 = 1/√2.
    Но треуг АСВ - прямоугольный с углом С=π/2, поэтому АС/СВ = tgβ = 1/√2.
    Также AC^2+ CВ^2 = (2√10)^2 = 40, отсюда, поделив на CВ^2, получим
    (1/√2)^2 + 1 = 40/ CВ^2, или 3/2 = 40/ CВ^2, отсюда CВ^2 = 80/3, т.е.
    CВ = √(80/3) = √(16*5/3) = 4* √((3*5)/(3*3)) = 4*√15 / 3.

  • @santiagoarosam430
    @santiagoarosam430 7 місяців тому

    a²=5→ a=√5→ r= Diagonal del cuadrado =a√2=√5√2=√10→ EB²=(√5)²+(√10)²=15→ EB=√15→ Si G es la proyección ortogonal de O sobre EB y h=OG→ h√15=√5√10→ h=√50/√15 → Razón de semejanza entre los triángulos ACB y OGB = s=AB/OB=2r/r=2→ AC=2h→ CB²=AB²-AC²=(2r)²-(2h)²=(2√10)²-(2√50/√15)²→ CB=20√15/15 =4√15/3.
    Gracias y saludos.

  • @gaylespencer6188
    @gaylespencer6188 7 місяців тому +1

    Found angle CBA. Then took Cos (CBA) and multiplied it by the diameter of (2*10^.5) = 5.16......

  • @yadonghu6219
    @yadonghu6219 6 місяців тому

    连接A,C;三角形ACB为直角三角形。直角三角形ACB与EOB相似,对应边成比例。BC:sqrt(10)=2*sqrt(10):sqrt(15)。BC=20/sqrt(15)。

  • @vcvartak7111
    @vcvartak7111 7 місяців тому +2

    You can also join AC and ACB and BOE are similar triangles and take side proportion

  • @maxgladkikh2326
    @maxgladkikh2326 4 місяці тому +1

    Я помню эту задачу! 9 класс советской школы, 40 лет назад. Почти все справились без затруднений. Как она может быть олимпиадной?

  • @plamenpenchev262
    @plamenpenchev262 4 місяці тому

    Put the same square to the right. Chord property then
    Sqrt(15)×|CE| = sqrt(5)×sqrt(5)
    Then sqrt(15) + sqrt(15)/3

  • @UrievJackal
    @UrievJackal 6 місяців тому

    We don't really know, which level of math, this Olympiad demands.
    Therefore, when first time I used a sine for BOE triangle, maybe I was wrong. Maybe children of that Olympiad may not know of trigonometry.
    So the best solution is to use similar triangles BOE and BCA at the end. Thus, BO/BE = x/AB; R/BE = x/2R.

  • @georiashang1120
    @georiashang1120 4 місяці тому

    R=BO=DO=CO=FE=√10 ;
    EO=√5 ;
    cos(∠EBO)=√2/√3 ;
    BC*(1/2)=2√5/√3 ;
    BC=4√5/√3=4√15/3

  • @mg.1044
    @mg.1044 4 місяці тому

    metot 2 ACB ~ OEB sin ß = CB /2r = r/ EB

  • @retarody9542
    @retarody9542 3 місяці тому

    Cos of tria = √10 / √15
    2r = 2√10
    X = cos x 2r = 4√15 / 3

  • @JPTaquari
    @JPTaquari 3 місяці тому

    I did it by triangulation and then by similarity of triangles and arrived at 5.24228. I must have rounded up a little. Nice exercise, congratulations
    From Brasil !

  • @user-gn4mq5cs6e
    @user-gn4mq5cs6e 6 місяців тому

    Drop a perpendicular on X, it will cut at x/2 and calculate X straight away

  • @Cricketdoctor_1999
    @Cricketdoctor_1999 7 місяців тому +1

    🤙Nice geometry problem bro!...

  • @TyyylerDurden
    @TyyylerDurden 25 днів тому

    I found BC through the similarity between the right triangle CAB (it is right because its hype is the circle's diameter) and the triangle OEB. 20/root 15

  • @1ciricola
    @1ciricola 7 місяців тому

    The radius of the circle is the length of line segment DO, which is √10 , since the length of each side of the square is √5. A line drawn between C and O likewise has a length of √10
    ΔCOB is an isosceles triangle. Since line segments EO and OB are known [√5 & √10 respectively], arctan .707 = 35.26°
    The isosceles triangle has two angles of 35.26° ∠CBO and ∠BCO
    The Altitude bisects the base BC at M. The length of each half can be calculated using the cosine function.
    Cos 35.26° = BM/BO = BM/√10
    (.816)(√10) = BM = 2.58, length of BC = (2)(BM) = 5.16

  • @tamirerez2547
    @tamirerez2547 4 місяці тому

    Very nice solution 👍

  • @KipIngram
    @KipIngram 2 місяці тому

    When I mention x and y coordinates, it is with the center of the circle taken as origin. The square has side length sqrt(5), so the circle has radius sqrt(2)*sqrt(5)=sqrt(10). So the angle X makes with the horizontal axis at B is arctan(sqrt(5)/sqrt(10)) = arctan(1/sqrt(2)). We can now use the law of sines to get the vertical coordinate of C:
    2*y(C)/sin(2*arctan(1/sqrt(2)) = 2*sqrt(10)
    y(C) = sqrt(10)*sin(2*arctan(1/sqrt(2))
    y(C) = 2.9814
    Now we can use these facts to get the x coordinate of C:
    2.9814/(sqrt(10)-x) = 1/sqrt(2)
    sqrt(10)-x = 2.9814*sqrt(2)
    x = sqrt(10) - 2.9814*sqrt(2)
    x = -1.0541
    Finally we can use the Pythagorean theorem to get X:
    X^2 = (sqrt(10)+1.0541)^2 + (2.9814)^2
    X^2 = 26.666
    X = 5.1640
    Q.E.D.

  • @اقرء
    @اقرء 5 місяців тому

    Tanks for watching

  • @constantinfedorov2307
    @constantinfedorov2307 6 місяців тому +1

    Я не очень понимаю, как такая элементарная задачка могла попасть на олимпиаду. В условии дано все - радиус известен, это диагональ квадрата, отрезок BE тоже считается тривиально (стороны EO = √5 OB = √10 => BE = √15), и дальше опять тривиальное подобие треугольников ABC и EBO. BC/AB = OB/EB; BC = (2√10)√(10/15) = (4/3)√15;
    Тут олимпиадой и не пахнет, на ЕГЭ бывают задачи сложнее.

  • @wiwa5613
    @wiwa5613 7 місяців тому

    |FD| = |OF| = sqrt(5)
    |OD| = r = sqrt(5) x sqrt(2) = sqrt (10)
    |BE| =sqrt (sqrt(10))^2 + (sqrt(5))^2) = sqrt(15)
    P(triangle) OBE = 1/2 x |OB| x |OE| = 5/2sqrt(2) and P(triangle) OBE = 1/2 x h(trangle BOE) x |BE| = 5/2sqrt(2) => h(trangle BOE) = 1/3 x sqrt(30)
    |OB| = |OC| = r = sqrt(10) => r^2 = (h (trangle BOE))^2 +(1/2 x |BC| )^2 => |BC| = 4/3 x sqrt(15)

  • @InventPeace1
    @InventPeace1 2 місяці тому

    Did they leave out of the description that " O " was the bisection point of AB ? InventPeaceNotWar

  • @احمدالجوهر-ظ4ت
    @احمدالجوهر-ظ4ت 5 місяців тому

    OB×AB=CB×EB
    ACB right angled

  • @inventionssimpleexpression7694
    @inventionssimpleexpression7694 Місяць тому

    Trigonometri kulnarak çözmek daha pratik ve şık

  • @GraeTheGreat-zl9us
    @GraeTheGreat-zl9us 5 місяців тому

    What app he using???

  • @sakibalmahmud686
    @sakibalmahmud686 4 місяці тому

    Triangle ABC and Triangle OBE symmetric.. Then OBE is fully known..then ABC aslo known..from that..

  • @vrcfncpdci
    @vrcfncpdci 2 місяці тому

    A good problemi for mr. perrelman the russian genius

  • @michallesz2
    @michallesz2 6 місяців тому

    IF BD=R then AO=OB and OD=R ERROR

  • @shoebmd428
    @shoebmd428 5 місяців тому

    Triangle ACB and OEB are similar, , it could have saved some steps

  • @himadrikhanra7463
    @himadrikhanra7463 6 місяців тому

    14+ 4root 5....? Line construction...similarly...diameter...Pythagoras

  • @SGuerra
    @SGuerra Місяць тому

    Uau! Que questão bonita. Eu encontrei uma solução um pouco diferente. Parabéns pela escolha!!! Brasil - setembro de 2024.

  • @joyhuang7845
    @joyhuang7845 6 місяців тому

    有另一左右對稱正方形,畫出來之後,也是利用圓內幕性質,即可求出EC

  • @Dauooria
    @Dauooria 7 місяців тому

    매일 매일 재미있는 수학 영상을 올려주셔서 감사합니다!
    I'm korean student

  • @just_isaac15
    @just_isaac15 3 місяці тому

    To the people who are stating other methods, I am so jealous😭😭

  • @alamshaikhahmad2415
    @alamshaikhahmad2415 7 місяців тому

    5×5=25×4=100sqrooth=10

  • @MYldrm
    @MYldrm 5 днів тому

    Five ore pipe?

  • @감나빗-26
    @감나빗-26 6 місяців тому

    is this for 8grade students?

  • @WlodekCiejkaTV
    @WlodekCiejkaTV 6 місяців тому

    There is much simpler solution.
    Angle ACB is 90
    =› triangles ABC and BOE are similar
    =› OB/EB=CB/AB
    =› CB=AB*OB/EB
    =› CB=2√10*√10/√15=20/√15=4√15/3.
    Result the same but solution more elegat.

  • @Misha-g3b
    @Misha-g3b 5 місяців тому

    2, -2, 2i, -2i.

  • @ivantatarchuk697
    @ivantatarchuk697 5 місяців тому

    Why OD is the radius of semi circle?

    • @cabinetdecuriositestechniq3059
      @cabinetdecuriositestechniq3059 5 місяців тому

      Yes, why is it the radius ? The entire demonstration is based on this false premise.

    • @LukovaMadubo
      @LukovaMadubo 4 місяці тому

      A distance from the centre to the circumference of the circle is having a name,it is called RADIUS

    • @cabinetdecuriositestechniq3059
      @cabinetdecuriositestechniq3059 4 місяці тому

      @@LukovaMadubo ...the supposed center of the circle. Nothing shows that O is the center of the circle. Therefore, OD is not the radius.

    • @ivantatarchuk697
      @ivantatarchuk697 4 місяці тому

      @@LukovaMadubo Sorry. I haven't noticed that O is the center.

  • @sergovoy
    @sergovoy 5 місяців тому

    Корневая труба)))

  • @cya3mdirl158
    @cya3mdirl158 5 місяців тому

    10:05 not obvious

  • @chimaths-class
    @chimaths-class 6 місяців тому

    Great

  • @ΓΕΩΡΓΙΟΣΔΟΥΖΕΝΗΣ-χ9κ
    @ΓΕΩΡΓΙΟΣΔΟΥΖΕΝΗΣ-χ9κ 4 місяці тому

    There is another way of doing it simplified yielding the same resault.

  • @RafaelCardoso-gu6pq
    @RafaelCardoso-gu6pq 6 місяців тому

    Mel, o cara que erra essa aí não acerta nem o local de prova

  • @GUIDORAFAEL2304
    @GUIDORAFAEL2304 4 місяці тому

    Show!

  • @mehmeteglen1521
    @mehmeteglen1521 7 місяців тому

    10 bence bir dakika sürmedi

  • @flastkchance5312
    @flastkchance5312 5 місяців тому

    Turkish children are given only 2 minutes to solve this.

  • @wasimahmad-t6c
    @wasimahmad-t6c 3 місяці тому

    10

  • @RK-tf8pq
    @RK-tf8pq 2 місяці тому

    Do proper video editing before presenting.

  • @sorourhashemi3249
    @sorourhashemi3249 2 місяці тому

  • @wasimahmad-t6c
    @wasimahmad-t6c 2 місяці тому

    5×1.4142135624=7.07×7.07=50×3.14159268=157.07-10×10=57.07÷4=14.2699

  • @amritpatel3794
    @amritpatel3794 2 місяці тому

    You took long rout.
    The angle ACB is 90* , since it lie within semi circle. and EOB is also 90*.
    So both triangle ABC & EBC are similar triangles.
    And you are done !!!