A very nice olympiad maths question | x^6=(x-1)^6 | You need to know this trick | Algebra

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 115

  • @wes9627
    @wes9627 6 місяців тому +21

    You need to know these tricks: Substitute x=y+1/2 into the given equation and rearrange to (y+1/2)^6-(y-1/2)^6=0. Pascal's triangle 1 6 15 20 15 6 1
    2[6(1/2)y^5+20(1/2)^3*y^3+6(1/2)^5*y]=0. Expand: 6y^5+5y^3+(3/8)y=0. Divide by y and multiply by 8: 48y^4+40y^2+3=0.
    Apply quadratic formula: y^2=(-40±32)/96=-1/12 or -3/4. Take square roots: y=±i√3/6 or ±i√3/2. Also note that y=0.
    Thus, x=y+1/2=(3±i√3)/6 or (1±i√3)/2 or 1/2.

    • @farhansadik5423
      @farhansadik5423 6 місяців тому

      extremely neat! thanks!

    • @satoth
      @satoth 6 місяців тому

      Also thought about Pascals triangle

  • @AlexIohannsen
    @AlexIohannsen 3 місяці тому +3

    0 is not a root, then divide by x⁶
    1 = (1 - 1/x)⁶
    t := 1 - 1/x, t ≠ 1
    t⁶ = 1 has 5 roots:
    {e^(⅓πni), n from 1 to 5} =
    = {-1, ½ ± ½sqrt(3) i,
    -½ ± ½sqrt(3) i}
    then 1 - t = 1/x can be equal:
    {2, ½ ± ½sqrt(3) i,
    3/2 ± ½sqrt(3) i} =
    = {2, e^(±⅓πi), sqrt(3) e^(±⅙πi)}
    then x can be equal:
    {½, e^(±⅓πi), 1/sqrt(3) • e^(±⅙πi)} =
    = {½, ½ ± ½sqrt(3) i,
    ½ ± ⅙sqrt(3) i}
    it is the final answer

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 6 місяців тому +7

    By inspection x=½ --> x-1=-½ is one of the root, as raising both of them to an even number yield the same positive number.

  • @michallesz2
    @michallesz2 6 місяців тому +37

    x=0,5 0,5 - 1= - 0,5

    • @syemvosyem
      @syemvosyem 5 місяців тому

      ​@@habeebalbarghothy6320what

  • @user-hy6sp7qe9k
    @user-hy6sp7qe9k Місяць тому

    Treat x^6-(x-1)^6 = (x^2)^3 - ((x-1)^2)^3 instead and then apply the identities a^2-b^2=(a-b)(a+b) and a^3-b^3=(a-b)(a^2+ab_b^2) to get
    x^6-(x-1)^6 = (2x-1) [ x^4 + x^2(x-1)^2 + (x-1)^4].
    Then note that x^4 + x^2(x-1)^2 + (x-1)^4 = [ x^2+(x-1)^2]^2-[x(x-1)]^2.
    Apply the identity a^2-b^2 = (a-b)(a+b) again and get
    x^4 + x^2(x-1)^2 + (x-1)^4 = [ x^2+(x-1)^2-x(x-1) ] [ x^2+(x-1)^2+x(x-1) ]
    Polynomial in each squared bracket is a quadratic one after simplification.

  • @shasanyaolabode9377
    @shasanyaolabode9377 3 місяці тому

    Interesting🎉

  • @joshuasparber156
    @joshuasparber156 5 місяців тому

    I always use b/2 = arithmetic mean of roots, A, and c = geometric mean squared of roots, G, with (x)2 + b*x + c for x = A +- sqrt((A)2 - G). It is a much quicker route to quadratic roots.

  • @sonicbreaker00
    @sonicbreaker00 20 днів тому

    much simpler solution if you use complex numbers in polar form.
    x^6 = (x-1)^6 --> (x-1)/x = 1^(1/6) = r, where r is one of the 6 roots of 1 on the complex plane [two lie on the real axis at 1 and -1] --> x = 1/(1-r), which rules out r = 1. therefore, the 5 solutions correspond to r = exp(i*Pi*n/3), where n = 1, 2, 3, 4, and 5 (noting that n=0 is ruled out).

  • @bentpc
    @bentpc 6 місяців тому +9

    x/(x -1) = e ^i(k π/3) for k = 1 2, 3, 4,5..There are 5 roots as this is a polynomial of degree 5.

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому +2

      Excellent

    • @franciscook5819
      @franciscook5819 6 місяців тому

      Almost exactly my thought when I saw the problem.

    • @thbb1
      @thbb1 3 місяці тому +1

      That's the easiest way to solve it. Showing a geometric interpretation of this equation, with the solutions describing a circle around 0 would help generalize solutions for (x-1)^n=x^n starting with the obvious solution x=1/2.

  • @Lemda_gtr
    @Lemda_gtr 3 місяці тому

    🎉🎉 great

  • @mohamedbenabdallah264
    @mohamedbenabdallah264 5 місяців тому +4

    very good

  • @aharoneassefa8888
    @aharoneassefa8888 5 місяців тому

    oho ur great
    I would lije ti apperciat ur methods

  • @jpl569
    @jpl569 4 місяці тому +1

    If x^6 = (x - 1)^6, then x - 1 = a x, where a is 6th root of unity, i.e. 1, j, j^2, -1, - j and - j^2.
    The solutions are x = 1 / (1 - a), with a ≠ 1 :
    { 1/2, - j, -j^2, (1 - j)/3, (1 - j^2) / 3 }.
    Thanks for your video.

    • @SpencersAcademy
      @SpencersAcademy  4 місяці тому +1

      You're welcome, brother

    • @yurenchu
      @yurenchu 4 місяці тому +1

      @@jpl569 In your description of the solution, why is j the principal complex (non-real) _cube root_ of unity, rather than the principal complex (non-real) _6th root_ of unity?
      (More concretely, why is j = -½ + i*½√3 (with negative real part) instead of j = ½ + i*½√3 (with positive real part)? )

    • @jpl569
      @jpl569 4 місяці тому

      @@yurenchu Good question ! The 6th roots of unity are given by : z^6 = 1. Then z^3 = 1 or z^3 = -1.
      If z^3 = 1, we find z = 1 or j or j^2. And if z^3 = - 1, we find z = - 1 or - j or - j^2.
      So j is the first 3rd root of unity (j = - 1/2 + i √3 / 2), and - j^2 is the first 6th root (- j^2 = - 1/2 + i √3 / 2).
      An important property of j is : 1 + j + j^2 = 0, so that 1 + j = - j^2, and 1 + j^2 = - j, and so on…
      So that the 6th roots are also {1, 1 + j, j, -1, j^2, 1 + j^2}.
      Have a nice time with math !

    • @yurenchu
      @yurenchu 4 місяці тому

      @@jpl569 Thanks for your reply. Ah, so it's just the consequence of how you preferred to solve the equation then (namely via z^3 = 1 first).
      Usually, the solutions to z^6 = 1 are given in polar form as z = e^(i*k*pi/6) , with k = 0 , 1 , 2 , 3 , 4 , 5 . So the "first" sixth root of unity (let's call it _u_ ) would naturally correspond to k=1 , which is z = u = e^(i*pi/6) = cos(pi/6) + i*sin(pi/6) = ½ + i*½√3 . The six 6th roots of unity can then be given as u^0 , u^1 , u^2 , u^3 , u^4 , and u^5 . (k=0 would correspond to the "zero'th" root, which is the positive real root z = u^0 = 1 .)
      I was wondering what j stood for (it wasn't clarified in your opening comment, and it's an unusual use of the letter j because in math it's often used as the imaginary unit, like i), and when I figured it out by matching your solution description to the explicit solution set, I just found it remarkable and somewhat puzzling that j apparently corresponds to the k=2 solution (or possibly even the k=4 solution), instead of the k=1 solution.

    • @jpl569
      @jpl569 4 місяці тому

      @@yurenchu Thanks for your comment. I admit that "j" may look a strange definition, but I used it in all my math studies as e^(2i π/3), because in my country everybody uses it.
      We also learned the calculations with j and j^2, which lead efficiently to nice results.
      By the way, the 6th roots of unity are e^(2i k π/6) with k = 0 , 1 , 2 , 3 , 4 , 5, not z = e^(i*k*pi/6) as you wrote... these are 12th roots... and cos (π/6) = √3 / 2 and not 1/2... 😉

  • @KipIngram
    @KipIngram 5 місяців тому

    By visual inspection, 0.5 is clearly a solution. Also note that if we expand (x-1)^6 it will lead off with x^6, which will cancel. Therefore we only expect five roots. The four roots other than 0.5 will be complex. To find them we proceed as follows.
    Divide both sides by x^6 to get
    (x-1)^6 / x^6 = 1
    [(x-1)/x]^6 = 1
    (1 - 1/x)^6 = 1
    To satisfy this, 1 - 1/x is one of the sixth roots of unity. These of course are at magnitude 1, angle a multiple of 60 degrees: Also, given the symmetry of the problem negating the right hand side doesn't change the solution set, and makes further work slightly cleaner. We have
    -1 + 1/x = 1
    -1 + 1/x = -1
    -1 + 1/x = cos(60) + j*sin(60)
    -1 + 1/x = cos(60) - j*sin(60)
    -1 + 1/x = -cos(60) + j*sin(60)
    -1 + 1/x = -cos(60) - j*sin(60)
    Now add 1 to both sides of every equation:
    1/x = 2
    1/x = 0

    • @SpencersAcademy
      @SpencersAcademy  5 місяців тому

      Excellent

    • @tunneloflight
      @tunneloflight 5 місяців тому +1

      Given the symmetry, the only real root has to be 0.5. obvious. Using your transformation the other four roots are the four corners on the unit circle. Excellent.

    • @yurenchu
      @yurenchu 4 місяці тому

      @@KipIngram The expressions of the solutions for x can be "cleaned up" (i.e. removing complex expressions from the denominator) by multiplying both numerator and denominator of a solution by the _complex conjugate_ of the denominator. (If z = a + j*b is a complex number (with real numbers a and b ), then zᶜ = a - j*b is the complex conjugate of z .) You'll find that all five solutions are of the form x = 0.5 + j*b , which is kinda surprising.

    • @KipIngram
      @KipIngram 4 місяці тому

      @@yurenchu Yes, I was lazy. 🙂 Thank you. I just wanted them far enough along to check the results using my calculator, which handles complex numbers natively (Swiss Micros DM42).

    • @yurenchu
      @yurenchu 4 місяці тому

      @@KipIngram LOL! Fair enough... I too am lazy. Namely too lazy to get out my calculator (Casio fx-82 ; I don't know if it also does complex numbers), that's why I always calculate things like this by hand, wherever/whenever I can. :-)
      Never heard of the Swiss Micros DM 42 before, I had to look it up: it looks quite cool, with a nice screen to render graphs and (I'm guessing) bitmap images.

  • @mikeeisler6463
    @mikeeisler6463 4 місяці тому

    Cube root of each side gives us
    x^2 = (x-1)^2 = x^2 -2x + 1
    0 = -2x + 1
    2x = 1
    x = 1/2

  • @zancle70
    @zancle70 3 місяці тому

    Proprietà delle potenze: stesso esponente, quindi devono avere la stessa base; essendo l'esponente pari, le basi possono essere opposte, questo conduce a due equazioni: 1) x=x-1 basi con lo stesso segno, e questa è chiaramente un'equazione impossibile x-x=1 quindi 0=1. 2) x=-x+1 basi opposte questa equazione si risolve subito x+x=1 quindi 2x=1 infine x=1/2

    • @erichombert139
      @erichombert139 2 місяці тому

      True in Real numbers but their are others roots in Imaginary numbers 👍

  • @marica-f3g
    @marica-f3g 3 місяці тому

    Hvala❤

  • @yurenchu
    @yurenchu 4 місяці тому

    x⁶ = (x-1)⁶
    Method 1:
    Note that x=0 is not a solution to this equation. So we can safely divide both sides by x⁶ :
    1 = (x-1)⁶/x⁶
    1 = [(x-1)/x]⁶
    1 = (1 - 1/x)⁶
    ... substitute u = (1 - 1/x) ...
    1 = u⁶
    This equation has six solutions in the complex plane:
    u = 1 , u = (1 ± i√3)/2 , u = (-1 ± i√3)/2 , u = -1 .
    If u = 1 :
    (1 - 1/x) = 1
    -1/x = 0
    x = -1/0 = undefined (could be +infinity or -infinity, or infinity*z where z is any unit direction in the complex plane)
    If u = (1 ± i√3)/2 :
    (1 - 1/x) = (1 ± i√3)/2
    -1/x = (-1 ± i√3)/2
    1/x = -(-1 ± i√3)/2
    x = -2/(-1 ± i√3)
    ... multiply both numerator and denominator of RHS by (1 ± i√3) ...
    x = -2(1 ± i√3)/[(-1 ± i√3)*(1 ± i√3)]
    x = -2(1 ± i√3)/[(±i√3 - 1)*(±i√3 + 1)]
    x = -2(1 ± i√3)/[ (±i√3)² - 1² ]
    x = -2(1 ± i√3)/[ (i)²(±√3)² - 1² ]
    x = -2(1 ± i√3)/[ (-1)(3) - 1 ]
    x = -2(1 ± i√3)/[ -4 ]
    x = (1 ± i√3)/2
    x = ½ ± i*½√3
    If u = (-1 ± i√3)/2 :
    (1 - 1/x) = (-1 ± i√3)/2
    -1/x = (-3 ± i√3)/2
    1/x = -(-3 ± i√3)/2
    x = -2/(-3 ± i√3)
    ... multiply both numerator and denominator of RHS by (3 ± i√3) ...
    x = -2(3 ± i√3)/[(-3 ± i√3)*(3 ± i√3)]
    x = -2(3 ± i√3)/[(±i√3 - 3)*(±i√3 + 3)]
    x = -2(3 ± i√3)/[ (±i√3)² - 3² ]
    x = -2(3 ± i√3)/[ (i)²(±√3)² - 3² ]
    x = -2(3 ± i√3)/[ (-1)(3) - 9 ]
    x = -2(3 ± i√3)/[ -12 ]
    x = (3 ± i√3)/6
    x = ½ ± i*⅙√3
    If u = -1 :
    (1 - 1/x) = -1
    2 = 1/x
    x = ½
    So there are five solutions, and they are:
    x = ½ ± i*½√3 , x = ½ ± i*⅙√3 , x = ½ .
    - - -
    Method 2: see reply to this comment, below.

    • @yurenchu
      @yurenchu 4 місяці тому

      Method 2:
      x⁶ = (x-1)⁶
      ux = x-1
      ... where u is any of the six (complex-valued) solutions to the equation u⁶ = 1 ; namely u = 1 , u = -1 , u = (½ ± i*½√3) , u = (-½ ± i*½√3) ...
      ux - x = -1
      (u-1)x = -1
      For u=1 this leads to 0x = -1 ==> x = undefined.
      For the other five values of u, we have the solution
      x = -1/(u-1)
      ... let uᶜ = the complex conjugate of u , and multiply both numerator and denominator of RHS by (uᶜ-1) ...
      x = -(uᶜ-1)/[(u-1)(uᶜ-1)]
      x = -(uᶜ-1)/[ uuᶜ - uᶜ - u +1 ]
      ... since all values of u are on the unit circle, uᶜ = 1/u and hence uuᶜ = |u|² = 1 ...
      x = -(uᶜ-1)/[ 1 - uᶜ - u +1 ]
      x = -(uᶜ-1)/[ 2 - (u + uᶜ) ]
      x = -(uᶜ-1)/[ 2 - 2*Re(u) ]
      ... where Re(u) is the real component of u ...
      x = -½(uᶜ-1)/[1 - Re(u)]
      x = -½(Re(u) - i*Im(u) - 1)/[1 - Re(u)]
      ... where Im(u) is the imaginary component of u ; u = Re(u) + i*Im(u) ...
      x = -½(Re(u) - 1 - i*Im(u))/[1 - Re(u)]
      x = ( -½(Re(u) - 1) + ½i*Im(u) )/[1 - Re(u)]
      x = -½(Re(u) - 1)/[1 - Re(u)] + ½i*Im(u)/[1 - Re(u)]
      x = ½ + i*½Im(u)/[1 - Re(u)]
      For u = -1 , Re(u) = -1 and Im(u) = 0 , so
      x = ½ + i*½(0)/[1 - (-1)] = ½ + i*0/2 = ½
      For u = ½ ± i*½√3 , Re(u) = ½ and Im(u) = ±½√3 , so
      x = ½ + i*½(±½√3)/[1 - (½)] = ½ + i*½(±½√3)/[½] = ½ ± i*(½√3)
      For u = -½ ± i*½√3 , Re(u) = -½ and Im(u) = ±½√3 , so
      x = ½ + i*½(±½√3)/[1 - (-½)] = ½ ± i*½(½√3)/[1½] = ½ ± i*(½√3)/[3] = ½ ± i*(⅙√3)
      So there are five solutions, and they are:
      x = ½ , x = ½ ± i*½√3 , x = ½ ± i*⅙√3 .

    • @SpencersAcademy
      @SpencersAcademy  4 місяці тому

      Excellent job!!

  • @PrasadPentaprk
    @PrasadPentaprk 5 місяців тому +1

    the easier way is to apply square root on both sides of the equation.

  • @arthurbuffon430
    @arthurbuffon430 6 місяців тому +1

    Ok, going for the representation of the roots, we get that there are 5 roots, you showed 4 wich are on the complex plane, how would we find the one on the real plane? I can guess it's +1/2, but how do we prove it?

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому

      In the video, I have one real root and 4 complex roots, making it five roots altogether. You can go ahead and watch how I got 1/2 as the real root.

  • @AlexMarkin-w6c
    @AlexMarkin-w6c 6 місяців тому +1

    x^6=(x-1)^6 positive for all x . Then ((x-1)/x)^6 = 1. (x-1)/x is 6th root of unity. Then, (x-1)/x = e^(i2kpi/6)=> x=1/(1- e^(i2kpi/6)) for k=0,1..,5. For k=0, there's no solution. For k=3, x=1/2. Substitute k=1, 2, 4,5 and obtain two pairs of complex conjugates for x.

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому

      Fantastic. You nailed it.💯

    • @AlexMarkin-w6c
      @AlexMarkin-w6c 6 місяців тому

      @@SpencersAcademy Okay I nail your Olympiad math problems. Let's see if you can nail our 9th grade regular maths problems. Solve sin(9x)=sin(5x)+sin(3x). You may record a video if you wish.

    • @yurenchu
      @yurenchu 4 місяці тому

      " x^6=(x-1)^6 positive for all x. "
      That's not true. As the video shows, one of the correct solutions is x = (½ + i*⅙√3) ; and for that solution,
      x⁶ = (½ + i*⅙√3)⁶ = [ (½(-i√3) + ½)*(i*⅓√3) ]⁶ = (½ - i*½√3)⁶ *(i⁶)*(⅓√3)⁶ = (1)*(-1)*(1/27) = -1/27
      (x-1)⁶ = (½ + i*⅙√3 - 1)⁶ = -1/27
      which is a negative real. (The same goes for the solution x = (½ - i*⅙√3) .)
      However, it doesn't affect the rest of the calculation in your comment.

  • @arcaltoby5772
    @arcaltoby5772 6 місяців тому

    Easy, the solution is x = ω. Any limit ordinal could work here really. Because any limit ordinal minus 1 is just that limit ordinal itself since it doesn't have any predecessor. As a result, there's more than 1 solution because we can't put a value of the number of limit ordinals there are. Keep in mind that limit ordinals are multiples of ω.

  • @muontran8589
    @muontran8589 5 місяців тому

    Lấy căn bậc 6 hai vế,ta có x=x-1 hay x-x=-1 hãy x-x=-1 hay0x=-1h ấy x=-1/0.Phương trình vô nghiệm

  • @garlicbananana
    @garlicbananana 6 місяців тому

    x^6 그래프를 상상해보면, y축을 기준으로 좌우 대칭이니 그 그래프를 오른쪽으로 1만큼 이동시킨 그래프와의 교점의 x좌표가 0과 1의 1:1 내분점일꺼라 생각할래요. 그편이 훨씬 간단하고 저에겐 더 아름답게 느껴지거든요

  • @parthasarathy4990
    @parthasarathy4990 4 місяці тому

    x/(x-1) =1**1/6
    x/(x-1) =1
    solve for x

  • @als2cents679
    @als2cents679 4 місяці тому

    Why not
    x^6 = (x - 1)^6
    => (x^3)^2 = ((x-1)^3)^2
    Taking square roots of both sides,
    => (x^3) = +/- (x-1)^3
    => x = x -1 (no solution) OR x = - (x - 1)
    So,
    x = - (x - 1)
    x = 1 - x
    2 x = 1
    x = 1/2

  • @ristespaseski8839
    @ristespaseski8839 3 місяці тому

    maybe it's 1? x pow 6 minus x pow 6 we can erase and - 1 pow 6 it's 1

  • @ThachHau1133
    @ThachHau1133 2 місяці тому

    {(x^3)^2-[(x-1)^3]^2}=0
    [x^3-(x-1)^3][x^3+(x-1)^3]=0
    {(1)[x^2+x(x-1)+(x-1)^2]}{(2x-1)[x^2-x(x-1)+(x-1)^2]}=0

  • @b213videoz
    @b213videoz 6 місяців тому

    7:22 "your trick" is more confusing than just applying the formula.
    Otherwise an excellent video, the most challanging problem I saw for today 😉

  • @Ncl3131
    @Ncl3131 5 місяців тому +1

    X=1/2

  • @nadkhaa8360
    @nadkhaa8360 6 місяців тому +2

    why you don't take the 6th root for both side at first?

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому +1

      When you do that, you're gonna miss other vital solutions for x

    • @dante_loves_plzza
      @dante_loves_plzza 6 місяців тому +1

      It will become x = x+1 which has no solution

    • @cosmolbfu67
      @cosmolbfu67 6 місяців тому

      ​@@dante_loves_plzzaIf power is even |x|=x+1

    • @dante_loves_plzza
      @dante_loves_plzza 6 місяців тому

      @@cosmolbfu67 that's |x^2n| = (x+1)^2n, I'm talking about x = x+1

    • @wilsonoliveira7447
      @wilsonoliveira7447 6 місяців тому

      If you do this, some of the results will be not available

  • @babitahaloi5360
    @babitahaloi5360 6 місяців тому +1

    1/2

  • @m.j.a6002
    @m.j.a6002 4 місяці тому

    0.5

  • @tirtharajbanerjee
    @tirtharajbanerjee 5 місяців тому +2

    Very good. But speed up speed up. You are toooooo slow.

    • @SpencersAcademy
      @SpencersAcademy  5 місяців тому +1

      Okay, thanks for the tip.

    • @tirtharajbanerjee
      @tirtharajbanerjee 5 місяців тому +3

      @@SpencersAcademy An Olympiad aspirant is very much aware of the basic identities. So, no need to reiterate those. You can directly jump redundant steps.
      Thank you.

    • @SpencersAcademy
      @SpencersAcademy  5 місяців тому +1

      @@tirtharajbanerjee Point noted. Thanks for the tips

  • @ErivaldoSilva-dv7vi
    @ErivaldoSilva-dv7vi 6 місяців тому

    Esse trem em português já é complicado imagina em grego. Fala português pra facilitar.

  • @michellepopkov940
    @michellepopkov940 6 місяців тому

    You must have 6 solutions. I contend in the X yi plane, you have two coincidental roots at -.5.

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому +1

      In a question like this, there exist only five roots.
      Let me explain it this way:
      Let's say you expand the RHS using binomial expansion. You'll have something like this:
      X^6 = x^6 - 6x^5 +15x^4 - 20x^3 + 15x^2 -6x +1.
      Subtract x^6 from both sides makes the equation 5th-degree polynomial. And that's why we've got five roots.

  • @abdurrouf2996
    @abdurrouf2996 3 місяці тому

    X=1\2

  • @qwfpgjful
    @qwfpgjful 4 місяці тому

    |x|=|x-1| =>
    X= 1/2
    ?

  • @hamitkoca1110
    @hamitkoca1110 5 місяців тому

    x^6=(x-1)^6 then x=+/-(x-1) x=x-1 no solution other x=-(x-1) hence x=1/2

  • @AngelPuti
    @AngelPuti 4 місяці тому

    X:= 0.5

  • @borisbeletskiy4681
    @borisbeletskiy4681 3 місяці тому

    Меня тоже удивило почему в ответе нет 0,5

  • @addy00919
    @addy00919 4 місяці тому

    I have a doubt

  • @gamingzeraora443
    @gamingzeraora443 6 місяців тому

    Shud be a quintic equation

  • @Ирина-р7ж1ч
    @Ирина-р7ж1ч 2 місяці тому

    А разве нельзя сразу из обеих частей извлечь корень шестой степени?

    • @SpencersAcademy
      @SpencersAcademy  2 місяці тому

      No. That's a wrong approach to any mathematics question. In a case like this, it's either you follow the steps outlined in the video or you expand the right-hand side using binomial expansion.

    • @WK-5775
      @WK-5775 2 місяці тому

      Of course it is possible; one just has to do it properly. As outlined in several other comments, one obtais (x-1)=wx with w one of the six 6th roots of unity. For all of them apart from w=1, this is solvable: x=1/(1-w).

  • @loli334
    @loli334 3 місяці тому

    |x|=|x-1|. Dos soluciones x=1-x,x=1/2 y la solución de -x=x-1, x=1/2. O sea sólo x=1/2

  • @samlsne
    @samlsne 5 місяців тому

    Why not solve 1=(1-y)^6 where y=1/x

  • @abrahamkal8040
    @abrahamkal8040 3 місяці тому

    X = -0.5

  • @jrfutube2013
    @jrfutube2013 6 місяців тому +1

    When would this equation to solve appear in a "real-world" situation? 🤔

    • @arthurbuffon430
      @arthurbuffon430 6 місяців тому +1

      Probably the stuff used to make the concepts of the equasions used to make the components for the machine you are typing that question on.

    • @sujitmohanty1
      @sujitmohanty1 5 місяців тому

      Quite a lot . Work on QM , and EM.

    • @jrfutube2013
      @jrfutube2013 5 місяців тому

      What are the acronyms QM and EM? Please clarify.

  • @mohammedibraheem554
    @mohammedibraheem554 3 місяці тому

    WHY THIS COMPLICATION LET X-1=Y THEN X^6 = Y^6 i.e X NOT EQUAL X-1 NOT VALID EQUATION

  • @КатяРыбакова-ш2д
    @КатяРыбакова-ш2д 5 місяців тому +1

    x=1/2....

  • @biddu2683
    @biddu2683 6 місяців тому

    If u take the 6th root, u get x=plus/minus( x-1). The plus sign gives u no solution but the minus sign gives x=-x+1 so x=1/2

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому +1

      That's fantastic. There are other solutions for x. You just got one. Which is the only real value.

  • @johnshelton1963
    @johnshelton1963 5 місяців тому

    No real root. X cannot equal x minus 2

  • @mk-jl3zd
    @mk-jl3zd 6 місяців тому

    Should have worked on 6 answers.

    • @jajajaxdxdxd123
      @jajajaxdxdxd123 6 місяців тому +1

      Why? The polynomial has degree 5

    • @mk-jl3zd
      @mk-jl3zd 6 місяців тому +1

      X is to the power of 6!

    • @jajajaxdxdxd123
      @jajajaxdxdxd123 6 місяців тому

      ​@@mk-jl3zd yep, but there is a subtraction

  • @akr749
    @akr749 Місяць тому

    Your tricks are too long and difficult.
    6 is even number. that's why x=x-1 (1) or x=-(x-1) (2)
    (1) has no solutions
    (2) x=0.5

  • @ЕржанАйтбаев-о2х
    @ЕржанАйтбаев-о2х 2 місяці тому

    Too much talking in very easy places

  • @ghamoz
    @ghamoz 6 місяців тому

    Valore assoluto di x = valore assoluto di ( x -1) e finisce in un minuto

    • @SpencersAcademy
      @SpencersAcademy  6 місяців тому

      You would o ly be having just one value of x. There are still other values