the most fun derivative of x^x^x^...

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 651

  • @blackpenredpen
    @blackpenredpen  Рік тому +12

    Can you solve x^x^x^...=2 vs. x^x^x^...=3 ua-cam.com/video/WAjgupg3hDk/v-deo.html

  • @ethannguyen2754
    @ethannguyen2754 5 років тому +902

    Girl : So how many exes do you have?
    Me : Well, I have an infinite amount of Xs

    • @KshitijKale
      @KshitijKale 4 роки тому +11

      Meme patch update 2020
      Me: Yes

    • @Qermaq
      @Qermaq 4 роки тому +14

      I don't want to find my x, and don't ask me about y, either.

    • @bartlomiejodachowski
      @bartlomiejodachowski 3 роки тому +4

      Hromosomes

    • @MisterPenguin42
      @MisterPenguin42 3 роки тому +13

      Don't worry, I can differentiate them all.

    • @Vivek-io3gj
      @Vivek-io3gj 2 роки тому +1

      You two must integrate well

  • @py8554
    @py8554 3 роки тому +203

    Did a bit of research and now I know that the function x^x^x^x^..... (which can also be viewed as the solution for y in the equation x^y=y or x=y^(1/y)) is called "tetration of infinite height" and this function converges for e^(-e) < x < e^(1/e), roughly the interval from 0.066 to 1.44. Also this function is related to the Lambert W-function. In fact y = WC-In x)/ (In x) where Wis the Lambert W-function, which is defined as the functional inverse of xe^x with respect to x.

    • @MiroslavOstapenko
      @MiroslavOstapenko Рік тому +1

      Knew the first part, but the relation with the W function blew my mind🤯❤️

    • @tangobravo5752
      @tangobravo5752 Рік тому

      Wis is the mentor to Beerus in Dragonball Super

  • @46pi26
    @46pi26 7 років тому +1796

    Instructions unclear; impressed too many girls

  • @GustavoOwned
    @GustavoOwned 6 років тому +320

    4:52
    You was smiling and that all. But all of sudden you became serious and said "Blue."
    Lmao haha

  • @Theraot
    @Theraot 7 років тому +617

    3:37 now that is what I cal huge integration

    • @blackpenredpen
      @blackpenredpen  7 років тому +49

      Alfonso J. Ramos hahhahhahaha!!!!!

    • @GustavoOwned
      @GustavoOwned 6 років тому +4

      LMAO

    • @clyde__cruz1
      @clyde__cruz1 6 років тому +5

      Integration?

    • @simohayha6031
      @simohayha6031 6 років тому +37

      @@clyde__cruz1 that arrow he draws is like a huge integration symbol

    • @MaggotNr9
      @MaggotNr9 5 років тому +3

      I had the same initial wtf thought xD

  • @soupe2000
    @soupe2000 5 років тому +767

    In the rendez-vous :
    girl : "So, what can you do?"
    me : "I can differentiate x^x^x^x^... "
    *she falls in your arms*

    • @legendarysom5605
      @legendarysom5605 5 років тому +10

      I went and she slapped me and said not maths

    • @RoyEduworks
      @RoyEduworks 5 років тому +4

      ua-cam.com/video/E29xoux3i_Y/v-deo.html

    • @findingdory3040
      @findingdory3040 4 роки тому +1

      I doubt it

    • @MatthewsPersonal
      @MatthewsPersonal 3 роки тому +1

      This works, can confirm. It took 12 hours of saying x^x though

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 7 років тому +774

    BPRP does know the right kind of girls^^

    • @blackpenredpen
      @blackpenredpen  7 років тому +38

      Hahahaha, thanks!!!!

    • @BeauBreedlove
      @BeauBreedlove 5 років тому +8

      And the rare quadruple factorial

    • @manofmystery5191
      @manofmystery5191 5 років тому +2

      You’re profile picture is Paul Dirac. You are now one of my favorite people on the internet.

    • @mohammedayankhan4497
      @mohammedayankhan4497 4 роки тому

      @@blackpenredpen I have differentiated x[4]x with respect to x, where this a[b]c represents infix notation.

  • @brooksgunn5235
    @brooksgunn5235 7 років тому +216

    Freshman boys, if you want to have the girls rolling in, show them the full solution. I cannot stress this enough. 👏

  • @bloodyadaku
    @bloodyadaku 7 років тому +46

    You can technically reduce that even more, as ylnx is equal to lny, so in the denominator you'd simply have x-xln(x^x^x^...)

    • @manuelferrer6501
      @manuelferrer6501 2 роки тому +5

      Same though, but x ln(x^x^...) could also just be = ln( x^x^x...) ?

    • @F_A_F123
      @F_A_F123 Рік тому

      ​@@manuelferrer6501 no, x * ln(x^x^ . . .) = ln((x^x^ . . .)^x) (1), which is not ln(x^x^ . . .) (2) (e. g. if we substitute √2 for x in (1) we'll get ln(2^√2) ≈ 0.980, and if we substitute that in (2) we'll get ln(2) ≈ 0.693.

  • @DoctorT144
    @DoctorT144 5 років тому +18

    The infinite power tower converges on: { e^(-e) < x < e^(1/e) }, approx. { 0.066 ~< x ~< 1.445 }
    Also fun fact, the square root of 2 raised to its own power infinitely many times is actually equal to 2. Try it in a calculator!

    • @paulchapman8023
      @paulchapman8023 4 роки тому +4

      Maybe I made an error, but my efforts to evaluate sqrt(2)^sqrt(2)^sqrt(2)^... aren’t giving me a clear answer. Here’s what I did:
      Let x = sqrt(2)^(sqrt(2)^(sqrt(2)^...))
      x = sqrt(2)^x
      x = 2^(x/2)
      Squaring both sides gives:
      x^2 = 2^x
      Which has two positive solutions:
      x = 2 or x = 4
      I know that there is another point where the functions x^2 and 2^x intersect, where x < 0, but since sqrt(2)^sqrt(2)... > 0, I disregarded it. I assume there is a similar process of elimination that rules out x = 4 as a solution, but what is it?

    • @GhostHawk272
      @GhostHawk272 2 роки тому +5

      @@paulchapman8023 when you squared, you created an extra solution

    • @morgoth4486
      @morgoth4486 Рік тому

      ​@@GhostHawk272he didnt, 4 satisfies second equation (before squaring) as well

    • @Riolupai
      @Riolupai Рік тому

      What about 3rd root of 3, 4th root of 4, etc (or alternatively sqrt(3), sqrt(4), etc)

    • @MouhibBayounes
      @MouhibBayounes 8 місяців тому

      ​@@Riolupai the third root of 3 gets you two solutions:
      The true solution, 2.478
      The second solution that you have to rule out, 3
      The fourth root of 4 is sqrt(2) 😂
      The fifth root of 5, is
      1.7649 (true solution)
      Or
      5 (other solution)
      I'm refering by the "true solution", to the result of a^a^a^...
      But if you take for example 5=x^x^x^...
      Then you will find x=5^1/5
      So then 5 would be either "the true solution" or "the other solution" to 5^1/5
      (And we found out it is the "other solution")

  • @someonelol3404
    @someonelol3404 4 роки тому +43

    Interesting! I tried on Georgebra to add more and more Xs in the denominator, but I observed that the value of f(0) was oscillating between 1 and 0 when I add more Xs, so it is not converging. But if you plug 0 in your incredible derivative, we see that it gives a division by 0, which correlates to the impossible value of f(0)! Awesome mate!

    • @esajpsasipes2822
      @esajpsasipes2822 Рік тому

      It oscillates because 0^0 = 1 and 0^1 = 1. So at the top-most x^x, it's 0^0 = 1, then 0^1 = 0, and it repeats until you get all the way down.

  • @copperfield42
    @copperfield42 7 років тому +34

    this is 2 when x=sqrt(2):
    let Y= x^x^x^x^... -> Y=x^Y, take ln -> ln(Y)=Y*ln(x), now let Y be 2, then
    ln(2)=2*ln(x)
    ln(2)/2=ln(x) take the exponential and swap places
    x=e^(ln(2)/2)
    x=(e^ln(2))^(1/2)
    x=(2)^(1/2)=sqrt(2)

    • @ethandickson9490
      @ethandickson9490 7 років тому +2

      That's cool, why specifically 2 though? This in general is x = (y)^(1/y) , y > 0, isn't it?

    • @copperfield42
      @copperfield42 7 років тому

      because that what is what he ask us in the video...
      and as this is a infinite exponentiation there is a value of x to which this no longer a constant, I don't know exactly where this thing explode, but is obvious that it does... maybe for anything greater than sqrt(2)? but it sure does for x>=2

    • @cameodamaneo
      @cameodamaneo 7 років тому +6

      I believe it blows up for
      x > e^(1/e)
      The function
      y = x^y
      Can be rewritten as
      x = y^(1/y)
      Of which the maximum is at
      x = e^(1/e), y = e
      He did found this maximum on his video about e^pi vs. pi^e.

    • @copperfield42
      @copperfield42 7 років тому

      🤔 that sound very interesting, yeah, that must be it...
      other commentator said the same...
      PD: you mean x>e^(1/e) right?

    • @cameodamaneo
      @cameodamaneo 7 років тому

      David Franco Whoops, yeah I did mean that haha. Thanks for pointing it out.

  • @Fematika
    @Fematika 7 років тому +23

    You can find a formula for when it does converge. x^...^x = y_n has y_n = x^y_(n-1). In order for each of these to converge, it must be the case that y_(n+1) = y_n, meaning x^y_n = y_n. So, if it does converge, it'll converge to a solution of that.
    Now, y is actually is the Lambert-W function, the inverse function of xe^x, of -ln(x) over -x. This is because -W(-ln(x)) / ln(x) = y, and -y * ln(x) = W(-ln(x)), so x^(-y) = e^(W(-ln(x))), and thus x^(-y) * W(-ln(x)) = W(-ln(x)) * e^(W(-ln(x))) = -ln(x), so you get -W(-ln(x)) / ln(x) * x^(-y) = 1. or y = x^(y).
    You find that there are no solutions to the Lambert-W function outside of the interval [-1/e, e], See here: math.stackexchange.com/questions/1693561/for-what-values-does-this-method-converge-on-the-lambert-w-function. So, we must have -1 / e

  • @link_z
    @link_z 7 років тому +205

    Okay, I'll throw here my approach to the max. value where this function converges. First of all let's call y=x^x^x..... Therefore, y=x^y like he does in the video.
    After that, we take natural logarithms on both sides, so we get ln(y)=y*ln(x). Isolate ln(x) and we have ln(x)=ln(y)/y.
    Let's call f(y)=ln x = ln(y)/y and differentiate respect to y.
    f'(y)=(1-ln(y))/y^2 (after some simplification).
    The maximum of this function, is when f'(y)=0, (1-ln(y))/y^2=0 --> 1-ln(y)=0 --> y=e
    With the second derivative we can see it's a maximum and not a minimum.
    Coming back to ln(x)=ln(y)/y substitute y=e to obtain x=e^(1/e).
    Therefore x=e^(1/e) is the biggest value of x where the function y=x^x^x... converges, to y=e.

    • @link_z
      @link_z 7 років тому +10

      If I've made any mistake please tell me!

    • @copperfield42
      @copperfield42 7 років тому +10

      that sound about right, and as sqrt(2)

    • @dougr.2398
      @dougr.2398 7 років тому +37

      The singular of maxima and minima are maximum and minimum.

    • @link_z
      @link_z 7 років тому +5

      Doug R. Thanks! I didn't know

    • @SmileyMPV
      @SmileyMPV 7 років тому +16

      Link_Z - Hardcore Indie Game Achievements You have only shown that x^x^x^... does not converge when x>e^(1/e), but you have not shown when it does converge.
      It turns out, for example that it does not converge for 0,05. To be exact, x^x^x^... converges exactly if 1/e^e≤x≤e^(1/e) or if x=-1.

  • @Dubstheduke
    @Dubstheduke 7 років тому +205

    Ya boi finna go impress some girls

  • @gaurav.raj.mishra
    @gaurav.raj.mishra 7 років тому +246

    it converges if x=1.

    • @mcmage5250
      @mcmage5250 7 років тому +21

      Its 1.

    • @anjelpatel36
      @anjelpatel36 6 років тому +10

      Then it would just be a constant function...

    • @TheLucasBurgel
      @TheLucasBurgel 6 років тому +41

      converges for -1

    • @philb2972
      @philb2972 6 років тому +3

      But what's the sign of y (or dy/dx, for that matter) for x

    • @mphayes98
      @mphayes98 6 років тому +25

      Converges for 0

  • @toasticide816
    @toasticide816 7 років тому +35

    love your videos, theyre pretty much the main reason i love calculus. slight request if u havent already done so, integrate it (if its possible im not sure)

    • @semiawesomatic6064
      @semiawesomatic6064 7 років тому +6

      Louis Moore you can't even integrate X^X and keep it in elementary functions. I doubt it can be done.

    • @toasticide816
      @toasticide816 7 років тому +4

      semi awesomatic ah yes i remember now. thanks :) same goes for x^y then i assume

    • @semiawesomatic6064
      @semiawesomatic6064 7 років тому +5

      Louis Moore unless it's a multivariable integration? Honestly don't know. But yeah in single variable it's impossible.

    • @tracyh5751
      @tracyh5751 7 років тому

      If you integrate the derivative you will just obtain y again.

    • @JoseEduardo-rw2rh
      @JoseEduardo-rw2rh 3 роки тому +1

      @@tracyh5751 + C

  • @brndsaav10410
    @brndsaav10410 7 років тому +200

    this feels like cheating...

    • @Nebukanezzer
      @Nebukanezzer 5 років тому +2

      Why?

    • @cpotisch
      @cpotisch 5 років тому +21

      @Pete Berg Yeah. Basically, all derivatives are cheating.

    • @pokrec
      @pokrec 5 років тому +14

      All math looks like cheating. And it is the beauty of the math.

    • @blurb8397
      @blurb8397 5 років тому

      It is, he didn’t prove the necessary assumptions to do it.
      I think this one requires uniform convergence, and this function series doesn’t even converge pointwise for most inputs in R.
      Edit:
      After further thought, maybe pointwise convergence is enough for this approach, I’m not sure though since I haven’t tried it on paper.

    • @HavaN5rus
      @HavaN5rus 5 років тому +2

      It's not even math. Firstly, he had do define what is x^x^x.... , because it's not a function from R to R. Then he had to define what is d/dx, and only after that he is allowed to do math

  • @VlanimationTales
    @VlanimationTales Рік тому +1

    You can also rewrite xy ln(x) at the end as x ln(x^y), which also equals x ln(y) because y = x^y. That would make the derivative in terms of x be [x^(x^(x^...))]^2 / [x - x ln(x^(x^(x^...)))].

  • @9wyn
    @9wyn 7 років тому +74

    blackpenredpenbluepen

    • @Theraot
      @Theraot 7 років тому +14

      I made that joke before...
      yet, reading it from you makes me want a to see a BlackPenRedPen & 3Blue1Brown collaboration

    • @Kassakohl
      @Kassakohl 6 років тому +2

      @@Theraot BluePenBluePenBluePenPencil

  • @dolevgo8535
    @dolevgo8535 7 років тому +3

    you could set x^x^x^x^... to be 2.
    then you could plug all the x^x^x^x which are not the base to be two.
    then you get x^2=2, or x=sqrt(2)

  • @nestorv7627
    @nestorv7627 7 років тому +72

    Cant wait to impress the guys with this ;)

  • @souhilaoughlis5832
    @souhilaoughlis5832 3 роки тому +2

    3:38 that sign look like a big integral 😂

  • @Mikethemystic
    @Mikethemystic 6 років тому +15

    Some say the x’s still go on to this day

  • @KwongBaby
    @KwongBaby 7 років тому +6

    thank you so much, you make integration/differentiation fun
    I love maths now

  • @eugenecretu7257
    @eugenecretu7257 2 роки тому +1

    Really cool video, I wondered about this when I learned calculus last year. I wasn't to find as nice of a solution as you

  • @gillrowley
    @gillrowley 3 роки тому +1

    Your videos are fascinating. Brings back my Calculus memories.

  • @ahusky4498
    @ahusky4498 6 років тому +9

    Can’t it still be simplified to
    dy/dx = ( x^(2 * x^x^x....) )/( x - ln(x^x^x...) )
    If you bring the 2 into the top tower and you bring the “xy” part into the ln and then use exponent laws to get the tower again

  • @paulgrimshaw6301
    @paulgrimshaw6301 7 років тому

    I think y = x^y is only a valid function for 0< x ≤ 1 and x = e^(1/e). For 1 < x < e^(1/e) there are two possible values of y for each x, and for x > e^(1/e) y doesn't exist. You can see this by considering the inverse function, which is simply y = x^(1/x).

  • @abramthiessen8749
    @abramthiessen8749 5 років тому

    Well, it does converge for 0

  • @Jacob-uy8ox
    @Jacob-uy8ox 7 років тому +6

    4:35 hahah impressing girls be like, hey honey, look at this huge exponential function

  • @quantum1861
    @quantum1861 4 роки тому

    Convergent for all x such that 0

  • @taruntomar7795
    @taruntomar7795 7 років тому +4

    that is just awesome
    no wait a minute its better than that
    can't wait for next video

  • @jeromesnail
    @jeromesnail 7 років тому +4

    Thank you

    • @SmileyMPV
      @SmileyMPV 7 років тому +2

      jeromesnail You are actually wrong. For x=0,05 it will not converge for example.

    • @DoctorT144
      @DoctorT144 5 років тому +1

      It's actually only for { e^(-e) < x < e^(1/e) }

  • @justafanofalphabetlore
    @justafanofalphabetlore Рік тому

    Including derivate of this infinite tetration is also calculate the main function -W(-ln(x))/(ln(x))

  • @modolief
    @modolief 6 років тому +2

    This was very entertaining, thanks!

  • @mightychondriaofthecell3317
    @mightychondriaofthecell3317 5 років тому +9

    🤣🤣🤣 I love that the motivation for this derivative is to impress girls. I'm definitely stealing that!

  • @rojastegulu
    @rojastegulu 7 років тому +8

    Totally expecting this! Haha, I really love the humor of your channel and how enthusiastic are you in your videos, greetings from Colombia, keep it up :P

  • @bananewane1402
    @bananewane1402 5 років тому

    Only converges when X = 1. When X=1 dy/dx = 1
    If X is 0 the bottom will be undefined due to the ln function.
    If X = -1 the bottom becomes imaginary (also due to ln function)

  • @christopherglanville1619
    @christopherglanville1619 5 років тому +1

    "if you want to make this slightly more interesting so you can impress girls" honestly one of the funniest things I've ever heard.

  • @fichte5061
    @fichte5061 4 роки тому +1

    4:54 you said 'blue' so seriously xD

  • @dustinbachstein3729
    @dustinbachstein3729 3 роки тому

    Fun fact: x^x^x^... can be expressed by solving y=x^y for y, using Lambert's W function!
    Result:
    x^x^...=e^(-W(-ln(x)))
    for x in (0, e^(1/e)]

  • @mrKreuzfeld
    @mrKreuzfeld 7 років тому

    I would love some comments about which functionspace this function belongs to. It is not clear to me that it is differentiable. It looks to me like it is only defined between 0

  • @jordiriera1081
    @jordiriera1081 5 років тому +2

    Okey, now integrate it

  • @piguyalamode164
    @piguyalamode164 7 років тому

    x^x^x^x... converges when x < e^(1/e) because if you set x^x^x^x^x...= b then x = b^(1/b) and the maximum value of b^(1/b) is b=e.

  • @RileyGallagher-ce4rq
    @RileyGallagher-ce4rq 9 місяців тому

    You can also write the final answer as y / x (1 - ln(y)), since y ln(x) = ln(xʸ) = ln(y).

  • @SlipperyTeeth
    @SlipperyTeeth 6 років тому +1

    y^2=x^(2y)
    x*y=x^(y+1)

  • @Adem-zb3uo
    @Adem-zb3uo 5 років тому +1

    Bro this guy is straight up hacking math

  • @earthbjornnahkaimurrao9542
    @earthbjornnahkaimurrao9542 6 років тому +3

    I plotted the first 71 tetrations of x, really quite interesting.
    Also, the first time I tried I made the mistake of iterating (((x^x)^x)^x ..... Is there a term for this? The limit is equal to 1 for 0

    • @senseibuh527
      @senseibuh527 6 років тому +1

      That equals x ^ (x ^infinity)

  • @chestercueto4613
    @chestercueto4613 4 роки тому

    This made me sub. Thank you sir

  • @davidwhitecross1021
    @davidwhitecross1021 6 років тому

    this is gold you're great!

  • @_radix_
    @_radix_ 4 роки тому +1

    Man, you're just amazing and your content is both enjoyable and useful at the same time

  • @akshaygavini2031
    @akshaygavini2031 7 років тому +69

    Zero dislikes. You've somehow hacked UA-cam.

  • @MatesMike
    @MatesMike 4 роки тому

    And which is the convergence domain of this function? Isnt it identically equal to 1?

  • @ValkyRiver
    @ValkyRiver Рік тому

    x converges between 1/(e^e) and the eth root of e.

  • @TheGundeck
    @TheGundeck 6 років тому +1

    It converges for values of x between 0 and about 1.445

  • @billtaylor4
    @billtaylor4 4 роки тому +1

    Me: I can take the Derivative of infinite power tower x^x^x^...
    Girl: That's cool. Let's integrate together, baby!

  • @bailey125
    @bailey125 5 років тому

    Say you have an even number of infinite exponentials, if you plug in x = 0, then y = 1, however if there are an odd number of exponentials than if you plug in x = 0, then y = 0. It's like saying whats the answer to Grandi's series
    if you start with 0 as he first term.

  • @soufian2733
    @soufian2733 6 років тому +1

    Weird. In the denominator of the final answer, if you bring the factors of ln(x) inside as its exponents, won't you just end up with ln(y) ? I feel like there's an infinite amount of answers

  • @cameodamaneo
    @cameodamaneo 7 років тому +8

    My hunch is that it converges for
    0 < x < e^(1/e)
    0 < y < e

    • @theginginator1488
      @theginginator1488 7 років тому

      Cameron Pearce it’s actually the inverse relation of y=x^(1/x)
      Your domain is spot on, but you will actually get 2 values for 1

    • @cameodamaneo
      @cameodamaneo 7 років тому

      TheGinginator14 I understand that. I was trying to paraphase because I am incredibly tired and I didn't think many would care.

    • @avivsilman3289
      @avivsilman3289 7 років тому

      You get Lim(x→0+)(x^x^x^x...)=0 from that.

    • @cameodamaneo
      @cameodamaneo 7 років тому

      Yes.

    • @ekadria-bo4962
      @ekadria-bo4962 7 років тому

      The domain of x is e^-1 < x < e^e^-1

  • @mikeburns6603
    @mikeburns6603 4 роки тому

    The function y only exists on the interval (0,1]. And it appears to always be equal to 1. Therefore it's a constant and the derivative is zero. Note: pay attention to the domain of the function.

    • @mikeburns6603
      @mikeburns6603 4 роки тому

      On closer inspection, it only seems to be defined for x=1. Since the function only exists at one point, it has no derivative.

  • @GottfriedLeibnizYT
    @GottfriedLeibnizYT 5 років тому +1

    calculate the limit of this derivative as x approaches 0

  • @Whysicist
    @Whysicist 3 роки тому

    Infinite Exponentials converge in, [0.06,1.4466], Barrows ~1936. His notation is, k = a ^ k, for , a, in, [0.06,1.4466], as i remember it…

  • @mattheworchard481
    @mattheworchard481 2 роки тому

    Aka derivative of x tetrated to infinity
    d/dx( ᪲x)
    Also, ᪲x is equal to the inverse of ˣ√x

  • @karinano1stan
    @karinano1stan 5 років тому

    The more formal form of result is W(-ln(x))^2/(x ln^2(x) (W(-ln(x)) + 1)). W(x) is product log function, also called Lambert function.

  • @hewhomustnotbenamed5912
    @hewhomustnotbenamed5912 5 років тому +1

    I cam up with y^2/(y^(1/y)*(1-ln(y))
    I did it by drawing a line tangent to y=x^y (since that is equivalent to the derivative) and then making a right hand triangle out of it with dx and dy as the legs.
    From their I just imagined dx/dy(x=y^(1/y)). It turned out to be equivalent to 1/tan(z) where is the angle formed by the dx leg going through the tangent line.
    From their I just worked out tan(z) so that I get dy/dx. That was equivalent to just taking the reciprocal of dx/dy(x=y^(1/y)).
    And that gave me dy/dx(y=x^y)=1/(1/y^2*y^(1/y)*(1-ln(y)))
    I feel skeptical of my answer but it checked out with the 2 tests I did.
    Can anyone confirm that my trigonometry method works?

  • @userBBB
    @userBBB 5 років тому +2

    4:34 geek to the power of infinity

  • @StarEclipse506
    @StarEclipse506 6 років тому +3

    "I have no idea what this is anymore"
    Your videos are awesome!!

  • @srpenguinbr
    @srpenguinbr 6 років тому +1

    You missed the opportunity to define y of x using Lambert W function.

  • @了反取子名
    @了反取子名 4 роки тому

    0:01 The oreo that kept by mathematician:
    this is too easy for me (eat vegetable)

  • @MisutaaPurinsu
    @MisutaaPurinsu 4 роки тому

    I have a question.
    I haven't studied that kind of derivative yet so I came up with this:
    f'(x)=((f^(-1))')^-1 (x)
    The inverse of f(x)=x^x^x^x^x^... ->
    y=x^y -> x=y^x; f^-1(x)=y=e^(lnx /x)
    y=f^-1 ' (x)=e^(lnx /x) * (1-lnx)/x^2
    f'=((f^-1)' )^-1-> x=e^(lny /y) * (1-ln y)/y^2
    How horrendous is that answer?
    (It actually works if you want to find the tangend line on y=a)

  • @ori1618
    @ori1618 4 роки тому

    I believe it converges for any value between one over e and the e root of e

  • @hamapleman
    @hamapleman 7 років тому +1

    BlackpenRedpen can you integrate this ??!

  • @LParvateesamBCE
    @LParvateesamBCE 4 роки тому +1

    fantastic sir

  • @Mansch007
    @Mansch007 6 років тому +5

    the derivative of y(x)=(x^x^x^x^...)*(lnx) seems much nicer and handier

  • @nathanaelmccooeye3204
    @nathanaelmccooeye3204 5 років тому +1

    Hi, how would you plug in and solve for a value of x? I guess go into the definitions of infinities? I would love to see videos on that! :D

  • @patuchitogomez6790
    @patuchitogomez6790 6 років тому +2

    You're very brillant for math
    You won my like

  • @kameblitz
    @kameblitz 3 роки тому +1

    Me thinking that the arrow means integration 😂😂😂

  • @timepaintertunebird8160
    @timepaintertunebird8160 4 роки тому

    Pretty sure the range -1 to 1 converges but idk if anything else does.

  • @machobunny1
    @machobunny1 6 років тому

    This is even better than Abramowitz and Stegun.

  • @jeremybuchanan4759
    @jeremybuchanan4759 7 років тому

    Very cool. Thanks!

  • @bahouskouidri3164
    @bahouskouidri3164 6 років тому +20

    You need to simplify more
    dy/dx=y²/x (1-lny)
    😇😇😇great job

  • @HenrySchach
    @HenrySchach 5 років тому

    That x^x^x^.... looks crazy

  • @charlesbromberick4247
    @charlesbromberick4247 3 роки тому

    Rabbits in the wild generally live about one year; domesticated rabbits commonly live up to ten years.

  • @Paul-222
    @Paul-222 Рік тому

    Why not factor out the common factor of x in the denominator and then make all those red x’s the power of the x that is the argument of the ln function. Then the denominator would be x(1 - ln [infinite tetration of x]).
    You could also move that 2 in your numerator inside the parentheses and subtract 1 by factoring the x out of the denominator. The numerator would be x to [(twice the infinite tetration of x) - 1)]

  • @deeptochatterjee532
    @deeptochatterjee532 7 років тому +1

    Girls don't feel restricted by what he said, feel free to impress me with this (seriously I love math so much)

  • @General12th
    @General12th 7 років тому +1

    Could we use implicit differentiation using Newton's notation? Because it seems like Leibniz's notation is way more useful.

  • @MrMatthewliver
    @MrMatthewliver 6 років тому

    I would be grateful for a similar explanation for the antiderivative of x^x^x...

  • @kyamb3890
    @kyamb3890 Рік тому

    Instead of implicit differentiation I just move all to one side and do -partial x/ partial y = dy/dx

  • @karantindead
    @karantindead 4 роки тому

    you are broking my mind) it's good

  • @morbidmanatee5550
    @morbidmanatee5550 7 років тому

    y=x^x^x^... is the same as y=x^y
    x=y^(1/y)
    When y=2, x=sqrt(2)
    Try different values of x :) Has very interesting properties.

  • @ziraddingulumjanly3759
    @ziraddingulumjanly3759 6 років тому

    Wonderful explonation ,Sir. Thanks

  • @aznvi3tprid3
    @aznvi3tprid3 3 роки тому

    May you do a video about the nth term of the sequence {-1/3,1/3,0,-1/3,1/3,0….}

  • @batman1155
    @batman1155 5 років тому

    You forgot to check if x-xyln(x)=0 because if it is, your have to exclude values of x and y.

  • @blower05
    @blower05 5 років тому

    How legitmate is to the subsitution of y =x^x^x^x^... @1:10 ?

  • @cedriccoulon4647
    @cedriccoulon4647 5 років тому

    For X^X^X^X... to converge, we have to choose a value of X between 1/(e^e) and e^(1/e)
    If you want the proof, juste ask me

  • @cosimobaldi03
    @cosimobaldi03 5 років тому

    the range of this function is from 0 to e^(1/e) or "e-th" root of e

  • @TheProloe
    @TheProloe 5 років тому

    Is it not the case you can simplify that expression a little?
    When we have xyln(x), if we move the y to the exponent of the ln(x), we get xln(x^y). But as we stated earlier, x^y = y, so I believe we can simplify xyln(x) to just xln(y).

  • @lars9168
    @lars9168 Рік тому

    i started studying mechanical engineering but since we also have math classes I kinda regret not simply going for pure MATH :D