Real Analysis 49 | Riemann Integral for Step Functions

Поділитися
Вставка
  • Опубліковано 24 гру 2021
  • 📝 Find more here: tbsom.de/s/ra
    👍 Support the channel on Steady: steadyhq.com/en/brightsideofm...
    Other possibilities here: tbsom.de/sp
    You can also support me via PayPal: paypal.me/brightmaths (Use "For friends and family" as payment type)
    Or via Ko-fi: ko-fi.com/thebrightsideofmath...
    Or via Patreon: / bsom
    Or via other methods: thebrightsideofmathematics.co...
    Please consider to support me if this video was helpful such that I can continue to produce them :)
    Each supporter gets access to the additional material. If you need more information, just send me an email: tbsom.de/s/mail
    Watch the whole video series about Real Analysis and download PDF versions, quizzes and exercises: tbsom.de/s/ra
    Supporting me via Steady is the best option for me and you. Please consider choosing a supporter package here: tbsom.de/s/subscribe
    🌙 There is also a dark mode version of this video: • Real Analysis 49 | Rie...
    🔆 There is also a bright mode version of this video: • Real Analysis 49 | Rie...
    🔆 To find the UA-cam-Playlist, click here for the bright version: • Real Analysis
    🌙 And click here for the dark version of the playlist: • Real Analysis [dark ve...
    🙏 Thanks to all supporters! They are mentioned in the credits of the video :)
    This is my video series about Real Analysis. We talk about sequences, series, continuous functions, differentiable functions, and integral. I hope that it will help everyone who wants to learn about it.
    x
    #RealAnalysis
    #Mathematics
    #Calculus
    #LearnMath
    #Integrals
    #Derivatives
    I hope that this helps students, pupils and others. Have fun!
    (This explanation fits to lectures for students in their first and second year of study: Mathematics for physicists, Mathematics for the natural science, Mathematics for engineers and so on)
    For questions, you can contact me: steadyhq.com/en/backend/messa...

КОМЕНТАРІ • 32

  • @user-dd6il8hp9y
    @user-dd6il8hp9y 11 місяців тому +5

    I didn't understand this course in French or Arabic my first language! & Now i understand it from you in English 😂 i'm so happy ❤

  • @SoopaPop
    @SoopaPop 2 роки тому +4

    What an excellent Christmas present!

  • @kingofdimensions823
    @kingofdimensions823 5 місяців тому +2

    This is extremely helpful for me to teach my students about the Riemann integral.

    • @brightsideofmaths
      @brightsideofmaths  5 місяців тому +1

      Thank you very much :) I hope you can also the other videos for your students :)

  • @Brumor
    @Brumor 4 місяці тому +1

    Great series on Real Analysis!

  • @EstheraJoannaTietchakTiago
    @EstheraJoannaTietchakTiago Місяць тому

    You are amazing sir, a real life sever thank you very much I now have a hope for my CA😊

  • @weinihao3632
    @weinihao3632 2 роки тому +1

    In the second case (8:00) partition P1 and P2 create equal sums, because both of them contain the set of points where the step function is discontinuous. Couldn't P3 then also be chosen to be the intersection of P1 and P2 to lead to the same conclusion?
    Edit: Oh, I just watched the next episode. Now I see the benefit of using the union.

  • @ffar2981
    @ffar2981 Рік тому

    For the second case: P1 and P2 must still contain the jumps, right? How do you denote that?

  • @nayjer2576
    @nayjer2576 Рік тому

    For Case 1: if in P2 for example x2 tilde is involved, left from x3 tilde and therefore left from x1 in P1, then the area of P2 is greater then P1, isn't it? And the condition P1 is a subset of P2 still holds.Edit: nevernimd, x0 = a is allways included, in both sets.

  • @sinanakhostin6604
    @sinanakhostin6604 Рік тому +1

    In the last part of explaining "Case 2" we have that Sigma_p1 = Sigma_p3 and Sigma_p2 = Sigma_p3. It is visible that no matter how many elements do P1 and P2 have and what are the lengths of each segment, all partitions P1, P2 and P3 cover the whole x-axis. However the c_j values (for P1) and d_j values (for P2) are not the same. This is therefore a bit unclear to me to see how the total sum of area under the two partitions turn out to be the same (the same as the total area under P3) !

    • @sinanakhostin6604
      @sinanakhostin6604 Рік тому +1

      I guess now I can see the point. No matter in which way we split the compact set [a,b] in the process of partitioning, the values of step-function phi is not going to change over certain intervals (the values c_j are not changing). and therefore P3 = P1 U P2 is only split the interval [a,b] into more segments. This is why the area-under-phi using P1,P2 or P3 remains the same.

  • @gauravnainwal5026
    @gauravnainwal5026 Рік тому

    Shouldn't the union of the two partitions cover both the cases?

  • @mathmalak3451
    @mathmalak3451 5 місяців тому

    Good Job
    I mean... maths is my life
    Now English language could be my life too because I understand math with this language and with your explanation.
    I am from North of Africa.

    • @brightsideofmaths
      @brightsideofmaths  5 місяців тому

      Thanks! I hope that the subtitles help a little bit :)

  • @awesomecraftstudio
    @awesomecraftstudio 5 місяців тому +1

    Why is the area under the graph the same for a finer partition? If we have no partition at all for example, and took the value of the rectangle with the first constant value, then we added ik more partitions at the jump points where it jumps to lower values, wouldn't the area get smaller? Doesn't this only work if the jump points are always included?

    • @brightsideofmaths
      @brightsideofmaths  5 місяців тому +1

      Thanks for the question. Even with more points at the lower level, you would not reduce the size of the rectangle at the higher level :)

    • @awesomecraftstudio
      @awesomecraftstudio 5 місяців тому

      @@brightsideofmaths damn thanks for the quick answer that is pretty impressive.
      Unfortunately I still don't get it. Isn't the point that the area is the same ragardeless of the partition? It seems to only work when the value of the function doesn't change within each partial segment, otherwise which value would you choose to multiply the segment length with?

    • @brightsideofmaths
      @brightsideofmaths  5 місяців тому

      Maybe just misunderstood the definition of the function phi? It's already defined as a step function with a chosen partition.@@awesomecraftstudio

  • @pinklady7184
    @pinklady7184 2 роки тому +1

    What is that symbol really called? I mean that circle with a verticle stroke in it.
    Is it a step function?

  • @Hold_it
    @Hold_it 2 роки тому

    Nice :D

  • @angelmendez-rivera351
    @angelmendez-rivera351 2 роки тому

    I think it may have been more helpful to define the integral in terms of Riemann sums first. Then it would have been clear why exactly the integral is well-defined in these cases.

    • @brightsideofmaths
      @brightsideofmaths  2 роки тому

      Indeed that is possible but I like the step function approach :)

  • @aashsyed1277
    @aashsyed1277 2 роки тому

    Examples? How to calculate ci?

  • @user-dd6il8hp9y
    @user-dd6il8hp9y 11 місяців тому

    I didn't understand this course in French or Arabic my first language! & Now i understand it from you in English 😂 i'm so happy ❤

    • @brightsideofmaths
      @brightsideofmaths  11 місяців тому

      Thanks :)

    • @kuronekonova3698
      @kuronekonova3698 7 місяців тому

      Could you be perhaps from the North African country, Tunisia, or any other Maghrebi country that uses French as the main language in the educational system?