Elementary vs. Non-Elementary integral battles! (beyond regular calculus)

Поділитися
Вставка
  • Опубліковано 31 січ 2025

КОМЕНТАРІ • 228

  • @blackpenredpen
    @blackpenredpen  5 років тому +56

    Battle 1, integral of cos(x^2) vs integral of cos(ln(x)), @1:00
    Battle 2, integral of ln(1-x^2) vs integral of ln(1-e^x), @7:55
    Battle 3, integral of x^(x/ln(x)) vs integral of x^x, @16:23
    Battle 4, integral of x*sqrt(x^3+4) vs integral of x*sqrt(x^4+4), @19:29
    Battle 5, integral of x/ln(x) vs integral of ln(x)/x, @32:25
    Battle 6, integral of ln(ln(x)) vs integral of sqrt(x*sqrt(x)), @34:00
    Battle 7, integral of sqrt(sin(x)) vs integral of sin(sqrt(x)), @36:13
    Battle 8, integral of sqrt(tan(x)) vs integral of tan(sqrt(x)), @40:52
    Battle 9, integral of tan^-1(x) vs integral of sin^-1(x)/cos^-1(x), @59:13
    Battle 10, integral of 1/(1-x^2)^(2/3) vs integral of 1/(1-x^2)^(3/2), @1:04:23
    file: docs.wixstatic.com/ugd/287ba5_3f60c34605f1494498f02a83c2e62b29.pdf

    • @chirayu_jain
      @chirayu_jain 5 років тому +3

      New challange for me😊

    • @VibingMath
      @VibingMath 5 років тому +2

      wow nice timestamp! Should be pinned yrself!

    • @yaleng4597
      @yaleng4597 5 років тому +1

      Where are those special functions?

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Yale NG Which ones are you talking about? They never appeared in the video.

    • @abhishektyagi4428
      @abhishektyagi4428 5 років тому

      SIR THE RESOURCES AND LINKS TO LEARN MATHEMATICS THAT YOU SAID IN YOUR VIDEO WITH fematika ARE STILL NOT UPLOADED IN THE DESCRIPTION OF THE VIDEO , please do upload those links

  • @hunter6549
    @hunter6549 5 років тому +33

    Another approach to the integral of ln(1-x^2) dx would be to factor the inside and then use the product rule of logarithms to get the integral of ln(1-x) + ln(1+x) dx. It's a bit easier to solve this way.

  • @The1RandomFool
    @The1RandomFool 5 років тому +15

    Just a real minor point of #4: you could also do a hyperbolic trig substitution instead, and you'd get a simple inverse hyperbolic sine term in the final answer instead of the natural logarithm. That natural logarithm is also convertible to the inverse hyperbolic sine.

  • @helloitsme7553
    @helloitsme7553 5 років тому +14

    The way I like to think about the Integral of cos(x^2): with some clever substitutions and Euler's formula it can be shown that it can be written in terms of the integral of e^(x^2) and since that cannot be defined in terms of elementary functions, thus the integral of cos(x^2) cannot be

  • @thomasborgsmidt9801
    @thomasborgsmidt9801 2 роки тому +4

    This is the best video You have made - of those I've seen.
    I was especially happy to know that ln(ln(x)) is a non-fundamental function. That question has been bothering me for years.

  • @giovanni1946
    @giovanni1946 5 років тому +2

    So nice to see a notification from bprp just after the first day of school :D

  • @benjaminbrady2385
    @benjaminbrady2385 5 років тому +27

    Solution to integral of sqrt(tan(x)):
    There's a blackpenredpen video on that + c

  • @VibingMath
    @VibingMath 5 років тому +7

    One-hour long video but u definitely spent a lot more time than that! Your effort should be appreciated! And also the patreon list grows longer everytime 😁👍
    PS it's 1am here in HK and yr thumbnail looks cool with some chill 😆

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Mak Vinci lollll thank you!! I prob will make another thumbnail tho. I don’t think that is that appealing lol

    • @VibingMath
      @VibingMath 5 років тому +1

      @@blackpenredpen Hey keep this kind of thumbnail man(but not too many), it makes others curious to press the thumbnail 😁

  • @holyshit922
    @holyshit922 4 роки тому +4

    22:21 Euler's substitution sqrt(u^2+4)=t-u would be better idea here
    Last one third Euler substution (with roots) or integrating by parts also are good option

  • @angelmendez-rivera351
    @angelmendez-rivera351 5 років тому +2

    To integrate arcsin(x)/arccos(x) from x = -1 to x = t < 1, let x = cos(θ). Then dx = -sin(θ) dθ. The integrand is now -arcsin(cos(θ))·sin(θ)/θ. The bounds are from θ = π to θ = arccos(t). On the interval (0, π), which is the codomain and range of arccos(t), arcsin(cos(θ)) = π/2 - θ. Therefore, the integrand is -(π/2 - θ)·sin(θ)/θ. Factoring -1 will change the bounds to run from θ = arccos(t) to θ = π, with integrand (π/2 - θ)·sin(θ)/θ. By linearity, this gives the integrals of (π/2)·sin(θ)/θ and -sin(θ). The first integral is equal to (π/2)·(Si(π) - Si(arccos(t))), and the second is equal to cos(π) - cos(arccos(t)) = -(1 + t). Then the total integral is simply equal to [(π/2)·Si(π) - 1] - (t + Si[arccos(t)]). Call (π/2)·Si(π) - 1 = C, so the integral is simply C - t - Si(arccos(t)). Done! For the record, Si(x) is defined as the integral from s = 0 to s = x of sin(s)/s.
    We can extend the answer to other intervals, but this requires some caution, since arcsin(cos(θ)) = π/2 - θ is no longer true in other intervals.

  • @OOTMI
    @OOTMI 5 років тому +1

    I love your enthusiasm!

  • @iabervon
    @iabervon 5 років тому +3

    On the first one, it was obvious, because cos(ln x)=(x^i+x^-i)/2. Power rule, separate real and imaginary coefficients, and put it back to trig functions. Even if you're not going to use complex numbers, you can guess the right integral because cos is like an exponential and goes well with ln and poorly with x^2.

  • @alejrandom6592
    @alejrandom6592 4 роки тому +2

    19:57 you can do both u-sub and trig-sub at the same time by letting x^2=2tan(theta) ;) then, xdx is nicely equal to sec^2 and the rest is just the usual

  • @GSHAPIROY
    @GSHAPIROY 4 роки тому +3

    15:05 In the last two terms of that answer (before the +C) it was not necessary to use absolute value around the ln input. Respond to this comment if you can figure out why!

  • @bodor3139
    @bodor3139 5 років тому

    Take my love for this channel from Bangladesh.

  • @chirayu_jain
    @chirayu_jain 5 років тому +98

    I want to know, how to prove that the integral of a function is not elementary, please tell

    • @blackpenredpen
      @blackpenredpen  5 років тому +95

      Chirayu Jain
      It’s quite hard to prove it mathematically. I think we need to know Galois theory from advanced abstract algebra in order to do so. I actually don’t have experience in it unfortunately.

    • @chirayu_jain
      @chirayu_jain 5 років тому +31

      @@blackpenredpen, what a coincidence I started learning abstract algebra just 2 weeks before., 😁

    • @japotillor
      @japotillor 5 років тому +7

      Galios Theory, it's probably easier to just know which ones are non-elementary, rather than to prove each one individually.

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +3

      Chirayu Jain You can prove the non-elementariness of an integral using the Risch algorithm.

    • @jongyon7192p
      @jongyon7192p 5 років тому +3

      @@japotillor That by itself doesn't disprove that there might be some weird unknown way to do an integral.

  • @wenhanzhou5826
    @wenhanzhou5826 5 років тому +6

    who else got a smile on the face at 16:15 because you have watched an old bprp video?

    • @williamadams137
      @williamadams137 5 років тому +1

      Sun and clouds me

    • @MG-hi9sh
      @MG-hi9sh 5 років тому +1

      Sun and clouds Nah, I still messed it up, ffs. 😂😂😂

  • @ayushk3870
    @ayushk3870 5 років тому +1

    Integration of e^-xx from +inf
    To -inf with pler co-ordinates

  • @charlietlo4228
    @charlietlo4228 4 місяці тому

    20:00 you can directly let x = √(2tan(theta))

  • @Armbrust666
    @Armbrust666 5 років тому +9

    The second one was a bit over the top, ln(1-x^2)=ln((1-x)(1+x))=ln(1-x)+ln(1+x)

    • @GhostyOcean
      @GhostyOcean 5 років тому

      Either way you need to do integration by parts. Personally, I broke up the ln but if makes sense to use IBP with a bit of work extra then go for it. As long as you get an answer and understand the process

    • @-james-8343
      @-james-8343 5 років тому

      GhostyOcean no you don’t need to do integration by parts with the method he stated. After you split the ln you can split the integral and solve them both by u sub

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      -James- Integrating ln(u) requires integration by parts, so you are wrong.

    • @GhostyOcean
      @GhostyOcean 5 років тому +2

      @@-james-8343 in order to integrate ln(x) you need to do IBP unless you have the answer memorized (xln(x)-x)

    • @MG-hi9sh
      @MG-hi9sh 5 років тому

      Gábor Tóth Tbh, it’s just as hard if you split it. I split it, and if anything, that made it harder because you have to do IBP twice.

  • @JamesLewis2
    @JamesLewis2 Рік тому

    You probably made that future video already, but it is interesting to point out that the most obvious attempt to antidifferentiate arcsin(x)/arccos(x) with respect to x results in the sine integral:
    A basic trigonometric identity has arcsin(x)=π/2−arccos(x), from which the integrand becomes ½π/arccos(x)−1; then the substitution x=cos(y) with dx=−sin(y)dy results in the sine integral.
    That is, ∫arcsin(x)/arccos(x) dx = -x−½π∫sin(y)/y dy = −x−½πSi(arccos(x))+C.

  • @Mario_Altare
    @Mario_Altare 5 років тому

    I love these videos! Encore, encore :-)

  • @Pageleplays
    @Pageleplays 5 років тому +14

    15:15 „Integrale für Euch“ 😂
    Grüße an alle Deutsche 🇩🇪🙌🏽

    • @blackpenredpen
      @blackpenredpen  5 років тому +3

      SGE 1899 Hahahah yea!!! Lars helped me to translate it. : )

    • @attamirza2602
      @attamirza2602 4 роки тому +1

      hahahah Ehrenmann

  • @sinosodialajay797
    @sinosodialajay797 5 років тому +1

    You are a great teacher

  • @KazACWizard
    @KazACWizard 2 роки тому

    integrating arcsinx/arccosx is actually doable;much easier to do than the other ones mentioned as undoable previously. its just a bit of subs and ibp and using the Si function.

    • @byronrobbins8834
      @byronrobbins8834 Рік тому +1

      We presently scratch the integral, if it is a non-elementary integral.

  • @xxgoku7774
    @xxgoku7774 5 років тому

    Thumbnails are getting stronger

  • @krabbediem
    @krabbediem Рік тому

    Hi BPRP, and thank you for the videos :D I guess this comment will go unnoticed, but if I never ask, I'll never know :)
    Why are half of these functions impossible to integrate? You just mention as a fact that it's impossible but never why. I'm not great at integration, so I don't understand _why_

  • @sinosodialajay797
    @sinosodialajay797 5 років тому +2

    On 14 September it is teacher's day in India . Please make a excellent special video on the day.

  • @nuklearboysymbiote
    @nuklearboysymbiote 5 років тому +1

    Number 8 was crazy

  • @jayapandey2541
    @jayapandey2541 5 років тому +2

    In India we have National Teachers' Day on 5th Sept. So, Happy Teachers' Day to BPRP and all other teachers in advance.

  • @seroujghazarian6343
    @seroujghazarian6343 5 років тому

    11:22-11:25 the integral of the thing you are saying needs partial fractions doesn't, actually, because the answer is clearly inverse hyperbolic tangent (Argthx/Argtanhx)

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Serouj Ghazarian Well, that's not correct either, since the domain or arctangent is different from the domain of the function we started with. Strictly speaking, partial fractions are the only correct way to get the most general antiderivative, and this can be proven.

    • @seroujghazarian6343
      @seroujghazarian6343 5 років тому

      @@angelmendez-rivera351 ArGtanH, not arctan

    • @seroujghazarian6343
      @seroujghazarian6343 5 років тому

      @@angelmendez-rivera351 the function we started with is ln(1-x^2), which has EXACTLY the same domain as Argtanh.

  • @mokouf3
    @mokouf3 5 років тому +4

    Battle 2: Don't use partial fraction! Use ln(ab) = lna + lnb rule first, much more simple!

    • @mcwulf25
      @mcwulf25 4 роки тому

      That was my thought. ln(1+x) + ln(1-x)

    • @dottemar6597
      @dottemar6597 3 роки тому

      That's what I did - got two standard ones.

  • @accountfantoccio5608
    @accountfantoccio5608 5 років тому +5

    Would it actually be faster to integrate cos(ln(x)) by using the complex definition of the cosine? You would then need to integrate (x^i+x^-i)/2, which is just a matter of integrating polinomials.

  • @andrewwang164
    @andrewwang164 4 роки тому

    integrating ln(cos x) would be an interesting one

  • @seeeeeelf
    @seeeeeelf 2 роки тому +2

    7:55 wouldn't that be easier to just factor 1-x^2 as (1-x)(1+x) and then use the log propertry to split the ln of the product?

  • @adityakumarvishwakarma7282
    @adityakumarvishwakarma7282 5 років тому +9

    Sir please make a video on ramanujan formula on finding value of pi

    • @chirayu_jain
      @chirayu_jain 5 років тому +4

      Oon Han has made a video on it

  • @nchoosekmath
    @nchoosekmath 5 років тому +3

    Correct me if I am wrong, but at 8:50, you can factor 1-x^2 and use rule of log to expand it into 2 terms?

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Oh yes. Then integration by parts after that. Both work

    • @nchoosekmath
      @nchoosekmath 5 років тому +1

      @@blackpenredpen Right, unless one memorize that integral of ln(x) is xln(x)-x hehe

    • @blackpenredpen
      @blackpenredpen  5 років тому

      n choose k yea

  • @robertl.crawford4369
    @robertl.crawford4369 2 роки тому

    Lets see those special functions!

  • @ishanbanjara734
    @ishanbanjara734 5 років тому +9

    I came here after the rap battle in 8 Miles😂... I am ready for the battle!!!

  • @rbradhill
    @rbradhill 5 років тому +1

    one take, with some cuts. i dig it 😁

  • @reu.mathematicsacademy8566
    @reu.mathematicsacademy8566 2 роки тому +2

    Brilliant sir

  • @Ri_F
    @Ri_F 5 років тому +2

    the ad I had for this just said "Find your Steve" 😱😱😱

  • @sinosodialajay797
    @sinosodialajay797 5 років тому +11

    Please make a collaboration video with 3blue1brown together

  • @cent.ugurdag
    @cent.ugurdag 5 років тому +1

    Hi, cos(X square) is a function . Geogebra gives a result, if you integrate ( calculate the area) between 2 points
    Why we can say that this integral does not have a result.thank you For your reply

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Cent Uğurdağ Because the antiderivative of cos(x^2) is *not* the area. The antiderivative of cos(x^2) is simply another function, but the area under the curve is a number. Not remotely the same thing. Any software can calculate any area, but if you ask Geogebra to give you the antiderivative, it *cannot* and *will not* give you an answer, because there is no answer.

    • @cent.ugurdag
      @cent.ugurdag 5 років тому

      İ agree but want to know why there is no antiderivative of this function

  • @Dalton1294
    @Dalton1294 3 роки тому

    Here's another way to write the answer to question 2, xln(1-x^2)-2x+2tanh^-1(x)+C

  • @benjaminbrady2385
    @benjaminbrady2385 5 років тому +1

    Now solve the special function ones!

  • @Промо-в1ю
    @Промо-в1ю 5 років тому +3

    It will be a great pleasure to me, if you explain how to separate elementary from nonelementary ones. Does such formular exist?

  • @حوداروك
    @حوداروك 5 років тому

    12:30 you could just directly integrate it to 2tanh^-1(x).
    instead of partial fractions.

  • @not_intelligent5733
    @not_intelligent5733 5 років тому

    √tanx i love this integral same as 1/(x^6+1)

  • @h.m.6228
    @h.m.6228 5 років тому

    May the chenlu be with your integrals.

  • @indrarajgocher7465
    @indrarajgocher7465 5 років тому

    Best videos sir for maths

  • @jamez6398
    @jamez6398 5 років тому +1

    My god, integral of x times the square root of (x^4 + x) is a really complicated integral. It would be even more complicated if one had to integrate sec^3(x) from scratch...
    34:26
    The integral of the square root of (x times the square root of x)?? The integral of the square root of (x + the square root of x)... 🙂
    The integral of √(x + √x)
    Or the integral of 1/√(x + √x)
    Or the integral of 1/√(1 + √x)

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      James Oldfield Obviously, it is sqrt(x·sqrt(x)). Also, the integral of x·sqrt(x^4 + x) is non-elementary, and is also not the integral dealt with in the video, and the one in the video was actually very simple.

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Also, integrating sec(x)^3 from scratch is fairly easy too.

    • @jamez6398
      @jamez6398 5 років тому

      @@angelmendez-rivera351
      You must be a really smart person to find this kind of thing easy. I'm still at the level of basic integration and differentiation, power rule stuff. Like 1/cube root (9x^4) + 3x^3 + x^2. Really, really basic stuff like that...

    • @jamez6398
      @jamez6398 5 років тому

      @@angelmendez-rivera351
      I was being cheeky. I know he said √(x√x). I was thinking it was easy (relatively), and that √(x + √x) would be a harder integral to do...

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +1

      James Oldfield I wouldn't say I'm smart, just math savvy. Anyway, I only said it's easy because that was one of the easier integrals showed in the video. Most of the other ones were more complicated. And it doesn't have anything on the integral of sqrt[tan(x)], or even worse, the cbrt[tan(x)] integral.
      The integral of sqrt(x + sqrt(x)) is indeed more complicated than the integral of sqrt(x·sqrt(x)). In fact, the integral is very clever. For example, if y = x + sqrt(x), then dy = [1 + 1/{2·sqrt(x)}]dx. Thus, sqrt(x + sqrt(x)) = sqrt(x + sqrt(x))[1 + 1/{2·sqrt(x)}] - sqrt(x + sqrt(x)/{2·sqrt(x)} = sqrt(x + sqrt(x))[1 + 1/{2·sqrt(x)}] - sqrt(sqrt(x) + 1)/2. Now one can split the integral in two parts using linearity. The integral of sqrt(x + sqrt(x))[1 + 1/{2·sqrt(x)}] can be found using the very simple substitution I already mentioned, and this integral will be equal to (2/3)·sqrt(x + sqrt(x))^3 + C. All the remains is evaluating the integral of sqrt(sqrt(x) + 1). Let z = sqrt(x) + 1, so x = (z - 1)^2, and dx = 2(z - 1)dz. This leaves the integral of 2z^(3/2) - 2z^(1/2) with respect to z. This is just a very basic power rule integral, and it gives the antiderivative (4/5)z^(5/2) - (4/3)z^(3/2) + C. Substitute back to get (4/5)·sqrt(sqrt(x) + 1)^5 - (4/3)·sqrt(sqrt(x) + 1)^3 + C. Altogether, the integral of sqrt(x + sqrt(x)) is nicely equal to (2/3)·sqrt(x + sqrt(x))^3 + (2/3)·sqrt(1 + sqrt(x))^3 - (2/5)·sqrt(1 + sqrt(x))^5 + C.

  • @saradehimi4791
    @saradehimi4791 5 років тому

    Big salutation from Algeria thank you Allah blesses you

  • @kaandogan2470
    @kaandogan2470 5 років тому +2

    Hey BPRP , can you make a video about Group Theory ?

  • @EduardoViruenaSilva
    @EduardoViruenaSilva 3 роки тому

    Second round:
    integral 1 / (1-x^2) = arctanh x + C

  • @JohnnyLaw3134
    @JohnnyLaw3134 День тому

    In the 2nd problem why not use the inv tanh instead of integration by parts?

  • @oscartroncoso2585
    @oscartroncoso2585 5 років тому +1

    LETS GO!

  • @Anders3000
    @Anders3000 5 років тому +1

    What font did you use in your document? Do you use LaTeX package or?

  • @GSHAPIROY
    @GSHAPIROY 4 роки тому

    26:25 100 Integrals #61.

  • @Lamiranta
    @Lamiranta 5 років тому

    bprp: *showing 8 integral battle*
    me: ...here we go again

  • @luizkemo
    @luizkemo 5 років тому +2

    What about x^dx? Can u do ir pls?

  • @Proximachannel
    @Proximachannel 5 років тому

    I like your microphone

  • @ruchishukla8507
    @ruchishukla8507 2 роки тому

    How did he found out that we can't do the other one?

  • @jmadratz
    @jmadratz 3 роки тому

    Do you think that Isaac newton would have been able to derive all of these integral solutions back in his day

  • @falkinable
    @falkinable 5 років тому +2

    For #9, the ln part turned out to be ln|cos(arctan(x))|, anyone else have this??

  • @VaradMahashabde
    @VaradMahashabde 5 років тому +1

    Question 3, the absolute troll

  • @tjli7472
    @tjli7472 5 років тому

    Hey Im a Calculus amateur. Just wondering what method did bprp used at 38:50. Thx in advance!

    • @CruzW123
      @CruzW123 5 місяців тому

      Hi! Four years later, are you still a calculus amateur?

  • @kingarth0r
    @kingarth0r 5 років тому +3

    which integrals are intermediate and high school?

  • @juanjoselezanomartinez5714
    @juanjoselezanomartinez5714 5 років тому +3

    Good video, can you please help me with this integral
    .. X*Sec(X)

    • @not_intelligent5733
      @not_intelligent5733 5 років тому

      Integration by parts
      X take D and I sec x
      Integration of secx is log|secx + tan x| and then its easy

    • @justabunga1
      @justabunga1 5 років тому +3

      It's non-elementary because if you try to do IBP, you get xln(abs(sec(x)+tan(x)))-integral of ln(abs(sec(x)+tan(x)))dx. Here integral of ln(abs(sec(x)+tan(x))) is non-elementary.

  • @anhadrajkhowa5850
    @anhadrajkhowa5850 2 роки тому

    Yall I was just vibing to the Doraemon theme song in the beginning.

  • @bryangohmppac6417
    @bryangohmppac6417 5 років тому

    Sir, why don't you make a video about proving that the ramanujan formula

  • @upsocietypublic8801
    @upsocietypublic8801 3 роки тому

    2-nd ln(1+x)(1-x) = ln(1+x)+ ln(1-x).

  • @ssdd9911
    @ssdd9911 5 років тому +1

    can show hyperbolic functions more love or not?

  • @mikedavis7636
    @mikedavis7636 Рік тому

    Isn't it instead of using partial fractions, Can we not have
    xln (1-x²) -2x + tanh-¹ (x) +c ?
    As the answer?

  • @ayushjuvekar
    @ayushjuvekar 5 років тому

    Hey bprp, what font do you use in your files and thumbnails?

  • @halaalp9706
    @halaalp9706 2 роки тому

    Why IS integral of tan (sqrt x ) impossible to solve
    I genuinely don't understand

  • @felixangelsanchezmendez1466
    @felixangelsanchezmendez1466 5 років тому

    Could you solve this integral? Integral of (secx)^(3/2). I wish you did it. Thanks for giving a lot of support

  • @jarogniewborkowski5284
    @jarogniewborkowski5284 4 роки тому

    Did You make already any video with non-elementary integrals like eliptic ones?

  • @wisecraftlive
    @wisecraftlive 5 років тому

    m8 im in high school learning quadratics XD
    could u do a video where u explain calculus and why it works sorry i just kinda don't get what ur doing and just don't get calculus - but i still sub

    • @MikFrost00
      @MikFrost00 4 роки тому +1

      Its all about analyzing a graph of the function. Integral is giving u a surface area under a function. Derivative is the gradient of a line tangent to the function

    • @wisecraftlive
      @wisecraftlive 4 роки тому

      @@MikFrost00 yes i got the practical part but the theory is really confusing (actual formulas etc)

  • @dkravitz78
    @dkravitz78 2 роки тому

    Number 2 way easier to write ln(1-x^2)=ln(1+x)+ln(1-x)

  • @rurafs7934
    @rurafs7934 5 років тому +1

    Wait... 1 hour 😯💚

  • @nchoosekmath
    @nchoosekmath 5 років тому +5

    58:05 is just insane lol

    • @blackpenredpen
      @blackpenredpen  5 років тому

      n choose k yea! And I didn’t do partial fractions just to save time. Lol

  • @aayushpatel6554
    @aayushpatel6554 3 роки тому

    Battle 8 is the best integral....

  • @cyruscyros1891
    @cyruscyros1891 2 роки тому

    On question number (8). Suppose you let integral equal to Q, then square both sides and integrate twice then take the sqr,, can it work?

  • @muscleeagle_
    @muscleeagle_ Рік тому

    I never forget the chendu😆

  • @moon-ia2068
    @moon-ia2068 2 роки тому

    can you know if the integration is possible or not just by looking at it ? , and if yes how do you know ?

  • @SR-kd4wi
    @SR-kd4wi 5 років тому +5

    Can you teach us group theory?

  • @Ni999
    @Ni999 5 років тому

    I hate that solution for ∫ √tanx dx and prefer this one -
    ∫ (√tanx + √cotx)/2 dx +
    ∫ (√tanx - √cotx)/2 dx
    Use the common denominator, √sinxcosx and split 2 into √2*√2, and rearrange -
    √½∫ (sinx+cosx)/√(2sinxcosx) dx +
    √½∫ (sinx-cosx)/√(2sinxcosx) dx
    Wouldn't it be nice if we had a way to use sin²x + cos²x = *1* on the bottom?
    *2sinxcosx*
    = 1 - ( *1* - 2sinxcosx)
    *= 1 - (sinx - cosx)²*
    = ( *1* + 2sinxcosx) - 1
    *= (sinx + cosx)² - 1*
    Substitute each one -
    √½∫ (sinx+cosx)/√(1-(sinx-cosx)²) dx +
    √½∫ (sinx-cosx)/√((sinx+cosx)²-1) dx
    Substitute
    t = sinx - cosx
    u = sinx + cosx
    √½∫ 1/√(1-t²) dt *-* √½∫ 1/(√u²-1) du
    = √½sin¯¹(t) - √½cosh¯¹(u) + C
    *Substitute back for t and u and you're done,* unless you prefer to use ln|u+√(u²-1)| in place of cosh¯¹(u). If so remember that √(u²-1) = √(2sinxcosx) and everyone converts that to √sin(2x) for no useful reason I can see but there it is if you want it.
    Note that √½ is really (1/√2) but I don't have all day to type that and you don't have all day parsing parentheses in a UA-cam comment.
    I'm sure it doesn't matter and it's probably just me but I find that solution a whole lot cleaner, easier to follow, and easier to remember with fewer chances of making an algebra mistake.
    The long, drawn out version is called _Trigonometric Twins_ (not my video) at ua-cam.com/video/dT8b8wAjTKM/v-deo.html and watch out for the typo near the end.
    You probably need to learn the method bprp showed to pass a test though. I don't know.
    I also find the similarity of the intermediate form compared to the algebraic answer in the video pretty interesting.
    √½∫ (√tanx + √cotx)/√2 dx +
    √½∫ (√tanx - √cotx)/√2 dx

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Ni999 Wow, well, this is just extremely pedantic as a comment. Let me address a few things:
      1. This is not that much simpler to what is on the video, contrary to what you claim. And the answer he gave was not in its simplest terms, so disputing elegance there is futile.
      2. 2sin(x)cos(x) is simplified to sin(2x) because it is, well, *simpler.* Individual trigonometric functions are always preferable to products thereof.
      3. BPRP's method is generalizable to higher order roots of tan(x), whereas yours is not. And considering the precedent this has on the channel, it makes perfect sense he explained it the way he did it.

    • @Ni999
      @Ni999 5 років тому

      @@angelmendez-rivera351 Ok.
      1. It's simpler *for me.* At the end of his solution, bprp had to look more than once to make sure of the substitutions at the end. I hit that same thing every time using the algebraic method for this particular problem. If you say it's not more elegant, fine. It's certainly easier *for me* to finish the substitutions.
      2. If I'm using it to solve for a definite integral, and I've already pulled up (or coded) the solutions for sinx and cosx and stored them, then it's easier to multiply the two stored values than to pull up a third trig function.
      3. Bprp has a video showing 4 ways to solve ∫ secx dx. The other three ways provide beneficial exercise and food for thought. He even has an alternative video (can't remember it off hand) where he shows integration using this same method - ∫ f(x) dx = ½∫ f(x)+g(x) dx + ½∫ f(x)-g(x) dx. So it's not just "my way" and he didn't avoid showing the overall method elsewhere because it couldn't be generalized.
      I never said that one ought not learn what he taught. I even said that you'd probably need to know his way for a test - that instrument to exhibit long-term learning.
      I thought that others who had missed the method would find it interesting. I'm not going to apologize because you found my comment pendantic - especially given that you felt the need to resort to numbered paragraphs.
      I thought this was also math for fun and anyone is free to agree and laugh with me or disagree and laugh at me. Either way, it's all good.
      Clearly I was dead wrong. Let me know if you want me to delete the comment (and therefore the thread), it makes no difference to me. Everyone who knows this channel knows who you are and respects you. I won't be bothering you again.

  • @surajsanganbhatla5905
    @surajsanganbhatla5905 5 років тому

    Only between you and me!😁

  • @herlysqr1650
    @herlysqr1650 5 років тому

    How we can know what is elementary and what is not?

  • @Lamiranta
    @Lamiranta 5 років тому

    I'm sorry but... why nobody said that derivative of sin(x) is *positive* cos(x), and derivative of cos(x) is *negative* sin(x).
    P.S. check 7th integral battle

    • @SN-pn9el
      @SN-pn9el 5 років тому

      He was doing the integral all along, not the derivative.

    • @Lamiranta
      @Lamiranta 5 років тому

      @@SN-pn9el oops, I forgot this. Now understand.

  • @mathswithpana
    @mathswithpana 2 роки тому

    hello brother. I get a different answer for number 2 intergral ln(1-x^2)dx instead of 1-x i get x-1 and 1+x is same as x+1

  • @jackhounsom8867
    @jackhounsom8867 5 років тому

    Isn’t it easier on the 2nd one to change it from ln(1-x^2) to ln((1-x)(1+x))=ln(1-x) + ln(1+x) and integrate like that?

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Jack Hounsom Eh... it's about as easy, but it depends

    • @MG-hi9sh
      @MG-hi9sh 5 років тому

      Jack Hounsom Nah, it’s worse, I did it, and trust me, it’s worse.

  • @toya618
    @toya618 5 років тому +2

    BPRP is an asmr youtuber now? 58:30

    • @MG-hi9sh
      @MG-hi9sh 5 років тому

      Yeah mate, he’s done it before.

  • @Sahan_viranga_hettiarachchi
    @Sahan_viranga_hettiarachchi 3 роки тому

    In second question you miss the number of 2 🙁🙁

  • @vijayrathore4811
    @vijayrathore4811 5 років тому

    Sir ,What is the integral of ∫(1-x^2)^n dx

  • @borntofight5887
    @borntofight5887 5 років тому +1

    Can you solve it
    Int. (x-2)/[(x-2)^2(x+3)^7]^1/3

  • @benjaminbrady2385
    @benjaminbrady2385 5 років тому +2

    Lol, I speak Irish but I don't know if that helps in the slightest

  • @mohammadzuhairkhan8661
    @mohammadzuhairkhan8661 5 років тому +1

    For no. 8, can't we split 1/(t^2-2) into partial fractions and use ln? It is much friendlier than coth. Also, why coth instead of tanh?

    • @blackpenredpen
      @blackpenredpen  5 років тому +2

      Yes. But it would be just longer...

    • @mohammadzuhairkhan8661
      @mohammadzuhairkhan8661 5 років тому +1

      @@blackpenredpen But why coth instead of say tanh? According to you they are identical...

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Mohammad Zuhair Khan ln in this situation is not friendlier than ln, since the inside of ln would be a complicated expression. In fact, coth is expressible in terms of ln, so that makes your point moot.

    • @MG-hi9sh
      @MG-hi9sh 5 років тому

      blackpenredpen Tbf, I prefer it because you can see how you get the answer, whereas the tanh is just a standard formula.

  • @Paul-ob2hy
    @Paul-ob2hy 5 років тому

    for number 2, isn’t the int of 2/1-x^2 just 2arccot(x)?