Solving the Impossible Bernoulli Integral

Поділитися
Вставка
  • Опубліковано 25 гру 2024

КОМЕНТАРІ • 94

  • @nirjharchaudhuri6484
    @nirjharchaudhuri6484 4 місяці тому +12

    the gamma function is incredibly cool! love the videos!

    • @Jagoalexander
      @Jagoalexander  4 місяці тому

      It really is!

    • @leif1075
      @leif1075 4 місяці тому

      ​@@JagoalexanderBit it's just something you know or don't so therefore just a contrivance righg can't younsoove without it?? Thanks for sharing.

  • @cameronspalding9792
    @cameronspalding9792 4 місяці тому +23

    @ 10:02 I think it should be Gamma(n+1) not Gamma(n-1)

    • @Jagoalexander
      @Jagoalexander  4 місяці тому +3

      Yes you are right, I made an error. Does not effect the rest of the video though

  • @AbhinavShah-hw5pz
    @AbhinavShah-hw5pz 4 місяці тому +6

    Good work dude!! This is one of my favorite integrals and i really liked your explanation on how to solve it. Hoping for more to come!
    BTW, your voice is very soothing

  • @sergiokorochinsky49
    @sergiokorochinsky49 4 місяці тому +31

    Suggestion for future videos:
    Do not write the plus sign like a "t", specially if you are going to use the variable t.

  • @PeterParker-gt3xl
    @PeterParker-gt3xl 4 місяці тому +1

    Johann solved it prior to the luxury of e, they were also seeking the sum of 1/k^2 where a student named Euler came to the rescue. Great job!

  • @abhinavjuly
    @abhinavjuly 4 місяці тому +1

    Such a good explanation thanks brother. keep it up

  • @willemesterhuyse2547
    @willemesterhuyse2547 2 місяці тому +1

    At timestamp: 12:45: u = positive infinity since ln (0) = - infinity

  • @_elusivex_
    @_elusivex_ 4 місяці тому +1

    hey, today i have found your channel and watched the x^{-x} video. you explain really well, and in a manner that everyone can grasp easily. keep the good work!

  • @shreebhattacharjee3502
    @shreebhattacharjee3502 4 місяці тому +2

    amazing thank you so much!! 😊

  • @KorepetycjeMatematyka
    @KorepetycjeMatematyka 4 місяці тому

    Good. Jako student bardzo interesowałem się tą funkcją. Super metoda całkowania.

  • @bassem.al-ashour
    @bassem.al-ashour 4 місяці тому +1

    The last result can be rewritten as
    Sig(n=1->inf)[(-1)^(n+1)/n^n]

  • @AndyGoth111
    @AndyGoth111 4 місяці тому +6

    0:37 I'll give you a second[INSTANT JUMP CUT]Right!

  • @AlessandroBorsa
    @AlessandroBorsa 4 місяці тому

    Bravo Lilin ! Grazie !

  • @Thechillilover
    @Thechillilover 4 місяці тому

    Great video!

  • @sebrosacademy
    @sebrosacademy 4 місяці тому

    great job. keep going

  • @MercuriusCh
    @MercuriusCh 4 місяці тому

    4:36
    Just, thank you!!
    So many UA-camrs skip this step now... I'm tired of writing comments with proper proof :)

  • @AhmedElasbati
    @AhmedElasbati 2 місяці тому

    Thank you

  • @drwho7545
    @drwho7545 4 місяці тому

    Wow, dude my brain was trippin and feelin fine just then. What a deep dive.

  • @ghostfacevillah
    @ghostfacevillah 4 місяці тому

    If someone had told me to squash that into the gamma function I would have thrown up, very well done

  • @kalo2543
    @kalo2543 4 місяці тому +1

    Hello dude, Nice vidéo.. what app did u use in this video?

  • @Thechillilover
    @Thechillilover 4 місяці тому +1

    Honest tears filled up inside me when I saw the integral 💀💀💀 😭😭😭

  • @jackmclane1826
    @jackmclane1826 4 місяці тому +1

    Is requirement 1 really met? I'm pretty sure that term approximates 0 with n->inf.

  • @EnginAtik
    @EnginAtik 4 місяці тому

    n=ʌ t=+ ∞=o makes it a little confusing but enjoyable as well

  • @GetYourMath
    @GetYourMath 4 місяці тому

    I was searching for a video like this... I was wondering, how could you solve the same integral but by the method by partial integration you mentioned... i'd like to see the demonsttation made in that way, thanks!😁

  • @ashishreddymv5827
    @ashishreddymv5827 4 місяці тому +3

    Isn’t limit n->infinity of fn(x)=0 for the first condition of the Dominating Convergence theorem?
    It doesn’t converge to xlnx

    • @maxchemtov3482
      @maxchemtov3482 4 місяці тому +6

      Yes, I think f(x) and fn(x) were mislabelled.
      DCT is used for swapping a *limit* with an integral, and so in the case of a summation, the relavent sequence of functions is the sequence of partial sums.
      Take f(x) to be the whole integrand e^(xlnx) and fN(x) to be the sum from 0 to N of (xlnx)^n/n!. Then as N->infinity, fN pointwise converges to f (this is just the convergence of e^x). So we’re good to go!

    • @ashishreddymv5827
      @ashishreddymv5827 4 місяці тому

      ​@@maxchemtov3482 thanks for the explanation

    • @MarcoMate87
      @MarcoMate87 4 місяці тому

      @@maxchemtov3482 Excellent comment. We can also use g(x) = e^|x log(x)| (and not simply e, as wrongly explained in the video) as the dominating function to apply the DCT. I used the absolute value because log(x) is negative between 0 and 1.

    • @migmit
      @migmit 4 місяці тому

      (x ln x)^n/n! converges to x ln x? I call bullshit.

  • @thatonedegenerate
    @thatonedegenerate 14 днів тому

    What about the indefinite form?

  • @rishy773
    @rishy773 4 місяці тому +5

    Hey! I was a bit confused on the very last part. Could you please explain how you rounded the 'sum of alternating inverse squares' to roughly 0.783431. From my limited understanding, the sum should approach (pi^2)/12, which is approximately 0.822467. Thanks for the awesome video either way!!

    • @Jagoalexander
      @Jagoalexander  4 місяці тому +3

      It isn't the sum of inverse squares. If you look carefully each term is n^-n not n^-2

    • @rishy773
      @rishy773 4 місяці тому

      @@Jagoalexander ohhhhhh. Thank you so much!

  • @FunThingsFun-wz2ec
    @FunThingsFun-wz2ec 4 місяці тому +4

    The n looks like an among us

  • @sajanator3
    @sajanator3 4 місяці тому +1

    Could you prove that the last part converges ?

    • @Jagoalexander
      @Jagoalexander  4 місяці тому +2

      It can be proven using the ratio test, have a go!

    • @kainenfecteau9001
      @kainenfecteau9001 4 місяці тому +1

      The alternating series test also makes is super clear that it converges imo

  • @adrianlautenschlaeger8578
    @adrianlautenschlaeger8578 4 місяці тому

    What happens if u change the integration boundaries, for example the integral of x^x from 0 to 2 ?

  • @gitboyyy
    @gitboyyy 4 місяці тому +2

    Meanwhile the Pi function is crying in the corner . JUSTICE for PI function😝. anyways , great vid

    • @Jagoalexander
      @Jagoalexander  4 місяці тому

      What is the pi function

    • @gitboyyy
      @gitboyyy 4 місяці тому

      @Jagoalexander it's just Gamma(x+1) . it's cooler imo 😁but noone mentions it for some reason

    • @Memzys
      @Memzys 3 місяці тому

      @@gitboyyy i also like the pi function. it more directly corresponds to factorial cuz theres no offset. the gamma function is nice in other places too but i feel like it takes too much of the spotlight

  • @user-gr5tx6rd4h
    @user-gr5tx6rd4h 2 місяці тому

    A v upside down is an n???

  • @Mate_one
    @Mate_one 4 місяці тому

    No tendría que ser mínimo mayor a 1?, ya que en 1 la función vale 1. Pregunto desde mi propia ignorancia

  • @X00000370
    @X00000370 4 місяці тому

    good math fun...

  • @Chiavaccio
    @Chiavaccio 4 місяці тому

    👏👏👏🔝

  • @dennisbrewer6469
    @dennisbrewer6469 3 місяці тому

    Incorrect application of the dominated convergence theorem.

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 місяці тому

    1-1/4+1/27-1/256+1/3125-1/6^6...

  • @AdrianRif
    @AdrianRif 4 місяці тому

    Slight mistake. You are correct about factor n! In the term, but it is equivalent to gamma(n+1) not gamma(n-1) as you wrote down in your proof.

    • @Jagoalexander
      @Jagoalexander  4 місяці тому

      Thank you, was just a mistake when I was remembering my method !

  • @Александр-п2ж6б
    @Александр-п2ж6б 4 місяці тому +1

    Ойй, сорри, а Х может быть комплексным числом? i, с действительной составляющей. Не досмотрел, некогда.

    • @Jagoalexander
      @Jagoalexander  4 місяці тому

      нет, «i» не может быть X, так как этот интеграл определен для действительных чисел, а не мнимых.

  • @koenth2359
    @koenth2359 4 місяці тому +1

    5:00 let y=x lnx, you say that lim[n to inf] (y^n/n!) = y. I don't believe that, I think it's 0. Wolfram alpha too.

    • @koenth2359
      @koenth2359 4 місяці тому

      Here's the intuition:
      In the expression (y/1)(y/2)...(y/n), nearly all factors (those with n>y) are smaller than 1 and they get arbitrarily small as n goes to infinity.
      So now given your f_n(x), now we have that f(x)=0. That's certainly integrable and therefore it's all fine, it does not affect the rest of the proof.

    • @Jagoalexander
      @Jagoalexander  4 місяці тому

      Thank you

    • @dariocastiella5860
      @dariocastiella5860 4 місяці тому

      ​@@JagoalexanderI have another question, when using the dominated convergence theorem, shouldn't you prove that the sum converges, rather than just "(xln(x))^n/n!"? If anything, this further proves that this expresion should converge to 0, for the sum to converge to some number (as necessary but not sufficient condition). It is not a correction, I have genuinely never seen applying dominated convergence with summation, so I could be wrong.

  • @ILYA1991RUS_Socratus
    @ILYA1991RUS_Socratus 4 місяці тому

    Круг.

  • @salmankhan2910
    @salmankhan2910 4 місяці тому +14

    Bro we cannot expand it about x = 0.

    • @Jagoalexander
      @Jagoalexander  4 місяці тому +4

      Explain?

    • @salmankhan2910
      @salmankhan2910 4 місяці тому +2

      x^x is not defined at x=0 and we cannot even find limit of this function at x=0.

    • @krishnamaity5056
      @krishnamaity5056 4 місяці тому +25

      lim x→0 x*lnx = 0, so lim e^(x*lnx) = e^0 = 1. So, lim x→0 e^(ln(x^x)) = x^x = 1.....
      0^0 is an indeterminate form obviously, but that only means that _x^y does not exist for x,y=0 in a defined fashion_ , like it exists *uniquely* while x,y=1. But that doesn't affect the existence of the limit x→0 x^f(x) (y=f(x)...); the limit could be checked for existence or calculated from itself (if existed).

    • @salmankhan2910
      @salmankhan2910 4 місяці тому +2

      ​@@krishnamaity5056 Pls check differentiability at x = 0, since it's a must condition for expansion.

    • @jessewolf7649
      @jessewolf7649 4 місяці тому +6

      @@salmankhan2910the limit is 1, I believe. Use l’ hospital on ln(x^x) = x ln x = lnx/(x^-1) first. This-> 0. So x^x -> 1. So the integral is improper but with an extra step or two I think his solution still works.

  • @taci9118
    @taci9118 4 місяці тому

    Kann man nicht einfach so integrieren 1/ x +1 * x ^ x +1

    • @deinauge7894
      @deinauge7894 4 місяці тому

      nein. versuche dein ergebnis abzuleiten - und vergiss nicht das x im Exponent von x^x...
      d/dx (1/(x+1) x^(x+1))=
      x^x * (1 - x/(x+1)^2 + x lnx)

  • @VijayIyer-yq4iu
    @VijayIyer-yq4iu 4 місяці тому +3

    I think this is wrong. n! = Gamma (n+1), not Gamma (n-1).

    • @Jagoalexander
      @Jagoalexander  4 місяці тому +1

      My bad, I meant to write n+1, solution is still valid and works though