Solving the Impossible Bernoulli Integral

Поділитися
Вставка
  • Опубліковано 7 лют 2025
  • 🎥 The Infamous Bernoulli Integral Solved! 📚🔥
    Have you ever wondered if the impossible can be achieved? In this video, I tackle the legendary Bernoulli integral, also known as the integral of x^x, and provide a detailed solution. This complex math problem has puzzled mathematicians for years, but today, we break it down step-by-step. Join me on this incredible math journey and see how we conquer the impossible!
    👍 Don't forget to like, comment, and subscribe for more math content!
    🔔 Hit the bell icon to get notified whenever I upload new videos.
    📢 Share this video with your friends who love math and challenges!
    📱 Follow me on social media:
    Instagram: @jagosprivatelife
    📧 Contact me for collaboration or inquiries
    🔍 Relevant Hashtags:
    #PutnamExam #IntegralCalculus #MathChallenge #AdvancedMath #Calculus #Mathematics #PutnamCompetition #MathTutorial #LearnMath #STEM #Education #MathVideo
    Thank you for watching, and happy solving!
    Video Creator: Jago Hodges

КОМЕНТАРІ •

  • @nirjharchaudhuri6484
    @nirjharchaudhuri6484 6 місяців тому +12

    the gamma function is incredibly cool! love the videos!

    • @Jagoalexander
      @Jagoalexander  6 місяців тому

      It really is!

    • @leif1075
      @leif1075 5 місяців тому

      ​@@JagoalexanderBit it's just something you know or don't so therefore just a contrivance righg can't younsoove without it?? Thanks for sharing.

  • @PeterParker-gt3xl
    @PeterParker-gt3xl 5 місяців тому +1

    Johann solved it prior to the luxury of e, they were also seeking the sum of 1/k^2 where a student named Euler came to the rescue. Great job!

  • @AbhinavShah-hw5pz
    @AbhinavShah-hw5pz 6 місяців тому +6

    Good work dude!! This is one of my favorite integrals and i really liked your explanation on how to solve it. Hoping for more to come!
    BTW, your voice is very soothing

  • @willemesterhuyse2547
    @willemesterhuyse2547 3 місяці тому +1

    At timestamp: 12:45: u = positive infinity since ln (0) = - infinity

  • @sergiokorochinsky49
    @sergiokorochinsky49 6 місяців тому +31

    Suggestion for future videos:
    Do not write the plus sign like a "t", specially if you are going to use the variable t.

  • @cameronspalding9792
    @cameronspalding9792 6 місяців тому +23

    @ 10:02 I think it should be Gamma(n+1) not Gamma(n-1)

    • @Jagoalexander
      @Jagoalexander  6 місяців тому +3

      Yes you are right, I made an error. Does not effect the rest of the video though

  • @bassem.al-ashour
    @bassem.al-ashour 5 місяців тому +1

    The last result can be rewritten as
    Sig(n=1->inf)[(-1)^(n+1)/n^n]

  • @_elusivex_
    @_elusivex_ 6 місяців тому +1

    hey, today i have found your channel and watched the x^{-x} video. you explain really well, and in a manner that everyone can grasp easily. keep the good work!

  • @ghostfacevillah
    @ghostfacevillah 5 місяців тому

    If someone had told me to squash that into the gamma function I would have thrown up, very well done

  • @drwho7545
    @drwho7545 5 місяців тому

    Wow, dude my brain was trippin and feelin fine just then. What a deep dive.

  • @danielbrstak5730
    @danielbrstak5730 День тому

    I think it's worth of mention great Norwegian mathematician and Fields medalist Atle Selberg obtained this result at the age of 13. Math is only for geniuses.

  • @AndyGoth111
    @AndyGoth111 6 місяців тому +6

    0:37 I'll give you a second[INSTANT JUMP CUT]Right!

  • @abhinavjuly
    @abhinavjuly 6 місяців тому +1

    Such a good explanation thanks brother. keep it up

  • @KorepetycjeMatematyka
    @KorepetycjeMatematyka 6 місяців тому

    Good. Jako student bardzo interesowałem się tą funkcją. Super metoda całkowania.

  • @MercuriusCh
    @MercuriusCh 6 місяців тому

    4:36
    Just, thank you!!
    So many UA-camrs skip this step now... I'm tired of writing comments with proper proof :)

  • @Thechillilover
    @Thechillilover 6 місяців тому +1

    Honest tears filled up inside me when I saw the integral 💀💀💀 😭😭😭

  • @shreebhattacharjee3502
    @shreebhattacharjee3502 6 місяців тому +2

    amazing thank you so much!! 😊

  • @AlessandroBorsa
    @AlessandroBorsa 5 місяців тому

    Bravo Lilin ! Grazie !

  • @thatonedegenerate
    @thatonedegenerate Місяць тому

    What about the indefinite form?

  • @AhmedElasbati
    @AhmedElasbati 4 місяці тому

    Thank you

  • @GetYourMath
    @GetYourMath 6 місяців тому

    I was searching for a video like this... I was wondering, how could you solve the same integral but by the method by partial integration you mentioned... i'd like to see the demonsttation made in that way, thanks!😁

  • @Thechillilover
    @Thechillilover 6 місяців тому

    Great video!

  • @EnginAtik
    @EnginAtik 5 місяців тому

    n=ʌ t=+ ∞=o makes it a little confusing but enjoyable as well

  • @sebrosacademy
    @sebrosacademy 6 місяців тому

    great job. keep going

  • @jackmclane1826
    @jackmclane1826 5 місяців тому +1

    Is requirement 1 really met? I'm pretty sure that term approximates 0 with n->inf.

  • @ashishreddymv5827
    @ashishreddymv5827 6 місяців тому +3

    Isn’t limit n->infinity of fn(x)=0 for the first condition of the Dominating Convergence theorem?
    It doesn’t converge to xlnx

    • @maxchemtov3482
      @maxchemtov3482 6 місяців тому +6

      Yes, I think f(x) and fn(x) were mislabelled.
      DCT is used for swapping a *limit* with an integral, and so in the case of a summation, the relavent sequence of functions is the sequence of partial sums.
      Take f(x) to be the whole integrand e^(xlnx) and fN(x) to be the sum from 0 to N of (xlnx)^n/n!. Then as N->infinity, fN pointwise converges to f (this is just the convergence of e^x). So we’re good to go!

    • @ashishreddymv5827
      @ashishreddymv5827 6 місяців тому

      ​@@maxchemtov3482 thanks for the explanation

    • @MarcoMate87
      @MarcoMate87 5 місяців тому

      @@maxchemtov3482 Excellent comment. We can also use g(x) = e^|x log(x)| (and not simply e, as wrongly explained in the video) as the dominating function to apply the DCT. I used the absolute value because log(x) is negative between 0 and 1.

    • @migmit
      @migmit 5 місяців тому

      (x ln x)^n/n! converges to x ln x? I call bullshit.

  • @dennisbrewer6469
    @dennisbrewer6469 4 місяці тому

    Incorrect application of the dominated convergence theorem.

  • @FunThingsFun-wz2ec
    @FunThingsFun-wz2ec 6 місяців тому +4

    The n looks like an among us

  • @user-gr5tx6rd4h
    @user-gr5tx6rd4h 4 місяці тому

    A v upside down is an n???

  • @kalo2543
    @kalo2543 6 місяців тому +1

    Hello dude, Nice vidéo.. what app did u use in this video?

  • @sajanator3
    @sajanator3 6 місяців тому +1

    Could you prove that the last part converges ?

    • @Jagoalexander
      @Jagoalexander  6 місяців тому +2

      It can be proven using the ratio test, have a go!

    • @kainenfecteau9001
      @kainenfecteau9001 6 місяців тому +1

      The alternating series test also makes is super clear that it converges imo

  • @adrianlautenschlaeger8578
    @adrianlautenschlaeger8578 6 місяців тому

    What happens if u change the integration boundaries, for example the integral of x^x from 0 to 2 ?

  • @gitboyyy
    @gitboyyy 6 місяців тому +2

    Meanwhile the Pi function is crying in the corner . JUSTICE for PI function😝. anyways , great vid

    • @Jagoalexander
      @Jagoalexander  6 місяців тому

      What is the pi function

    • @gitboyyy
      @gitboyyy 6 місяців тому

      @Jagoalexander it's just Gamma(x+1) . it's cooler imo 😁but noone mentions it for some reason

    • @Memzys
      @Memzys 5 місяців тому

      @@gitboyyy i also like the pi function. it more directly corresponds to factorial cuz theres no offset. the gamma function is nice in other places too but i feel like it takes too much of the spotlight

  • @rishy773
    @rishy773 6 місяців тому +5

    Hey! I was a bit confused on the very last part. Could you please explain how you rounded the 'sum of alternating inverse squares' to roughly 0.783431. From my limited understanding, the sum should approach (pi^2)/12, which is approximately 0.822467. Thanks for the awesome video either way!!

    • @Jagoalexander
      @Jagoalexander  6 місяців тому +3

      It isn't the sum of inverse squares. If you look carefully each term is n^-n not n^-2

    • @rishy773
      @rishy773 6 місяців тому

      @@Jagoalexander ohhhhhh. Thank you so much!

  • @Mate_one
    @Mate_one 6 місяців тому

    No tendría que ser mínimo mayor a 1?, ya que en 1 la función vale 1. Pregunto desde mi propia ignorancia

  • @giuseppemalaguti435
    @giuseppemalaguti435 6 місяців тому

    1-1/4+1/27-1/256+1/3125-1/6^6...

  • @AdrianRif
    @AdrianRif 5 місяців тому

    Slight mistake. You are correct about factor n! In the term, but it is equivalent to gamma(n+1) not gamma(n-1) as you wrote down in your proof.

    • @Jagoalexander
      @Jagoalexander  5 місяців тому

      Thank you, was just a mistake when I was remembering my method !

  • @Александр-п2ж6б
    @Александр-п2ж6б 5 місяців тому +1

    Ойй, сорри, а Х может быть комплексным числом? i, с действительной составляющей. Не досмотрел, некогда.

    • @Jagoalexander
      @Jagoalexander  5 місяців тому

      нет, «i» не может быть X, так как этот интеграл определен для действительных чисел, а не мнимых.

  • @Chiavaccio
    @Chiavaccio 6 місяців тому

    👏👏👏🔝

  • @X00000370
    @X00000370 6 місяців тому

    good math fun...

  • @koenth2359
    @koenth2359 6 місяців тому +1

    5:00 let y=x lnx, you say that lim[n to inf] (y^n/n!) = y. I don't believe that, I think it's 0. Wolfram alpha too.

    • @koenth2359
      @koenth2359 6 місяців тому

      Here's the intuition:
      In the expression (y/1)(y/2)...(y/n), nearly all factors (those with n>y) are smaller than 1 and they get arbitrarily small as n goes to infinity.
      So now given your f_n(x), now we have that f(x)=0. That's certainly integrable and therefore it's all fine, it does not affect the rest of the proof.

    • @Jagoalexander
      @Jagoalexander  6 місяців тому

      Thank you

    • @dariocastiella5860
      @dariocastiella5860 6 місяців тому

      ​@@JagoalexanderI have another question, when using the dominated convergence theorem, shouldn't you prove that the sum converges, rather than just "(xln(x))^n/n!"? If anything, this further proves that this expresion should converge to 0, for the sum to converge to some number (as necessary but not sufficient condition). It is not a correction, I have genuinely never seen applying dominated convergence with summation, so I could be wrong.

  • @ILYA1991RUS_Socratus
    @ILYA1991RUS_Socratus 6 місяців тому

    Круг.

  • @taci9118
    @taci9118 5 місяців тому

    Kann man nicht einfach so integrieren 1/ x +1 * x ^ x +1

    • @deinauge7894
      @deinauge7894 5 місяців тому

      nein. versuche dein ergebnis abzuleiten - und vergiss nicht das x im Exponent von x^x...
      d/dx (1/(x+1) x^(x+1))=
      x^x * (1 - x/(x+1)^2 + x lnx)

  • @salmankhan2910
    @salmankhan2910 6 місяців тому +14

    Bro we cannot expand it about x = 0.

    • @Jagoalexander
      @Jagoalexander  6 місяців тому +4

      Explain?

    • @salmankhan2910
      @salmankhan2910 6 місяців тому +2

      x^x is not defined at x=0 and we cannot even find limit of this function at x=0.

    • @krishnamaity5056
      @krishnamaity5056 6 місяців тому +25

      lim x→0 x*lnx = 0, so lim e^(x*lnx) = e^0 = 1. So, lim x→0 e^(ln(x^x)) = x^x = 1.....
      0^0 is an indeterminate form obviously, but that only means that _x^y does not exist for x,y=0 in a defined fashion_ , like it exists *uniquely* while x,y=1. But that doesn't affect the existence of the limit x→0 x^f(x) (y=f(x)...); the limit could be checked for existence or calculated from itself (if existed).

    • @salmankhan2910
      @salmankhan2910 6 місяців тому +2

      ​@@krishnamaity5056 Pls check differentiability at x = 0, since it's a must condition for expansion.

    • @jessewolf7649
      @jessewolf7649 6 місяців тому +6

      @@salmankhan2910the limit is 1, I believe. Use l’ hospital on ln(x^x) = x ln x = lnx/(x^-1) first. This-> 0. So x^x -> 1. So the integral is improper but with an extra step or two I think his solution still works.

  • @VijayIyer-yq4iu
    @VijayIyer-yq4iu 6 місяців тому +4

    I think this is wrong. n! = Gamma (n+1), not Gamma (n-1).

    • @Jagoalexander
      @Jagoalexander  6 місяців тому +1

      My bad, I meant to write n+1, solution is still valid and works though