Collaborative Filtering

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 11

  • @albela7434
    @albela7434 26 днів тому

    Ma'am you are amazing I don't know y this video is underrated people should watch this video

  • @mayanksj
    @mayanksj 7 років тому +5

    Machine Learning by Prof. Sudeshna Sarkar
    Basics
    1. Foundations of Machine Learning (ua-cam.com/video/BRMS3T11Cdw/v-deo.html)
    2. Different Types of Learning (ua-cam.com/video/EWmCkVfPnJ8/v-deo.html)
    3. Hypothesis Space and Inductive Bias (ua-cam.com/video/dYMCwxgl3vk/v-deo.html)
    4. Evaluation and Cross-Validation (ua-cam.com/video/nYCAH8b5AQ0/v-deo.html)
    5. Linear Regression (ua-cam.com/video/8PJ24SrQqy8/v-deo.html)
    6. Introduction to Decision Trees (ua-cam.com/video/FuJVLsZYkuE/v-deo.html)
    7. Learning Decision Trees (ua-cam.com/video/7SSAA1CE8Ng/v-deo.html)
    8. Overfitting (ua-cam.com/video/y6SpA2Wuyt8/v-deo.html)
    9. Python Exercise on Decision Tree and Linear Regression (ua-cam.com/video/lIBPIhB02_8/v-deo.html)
    Recommendations and Similarity
    10. k-Nearest Neighbours (ua-cam.com/video/PNglugooJUQ/v-deo.html)
    11. Feature Selection (ua-cam.com/video/KTzXVnRlnw4/v-deo.html )
    12. Feature Extraction (ua-cam.com/video/FwbXHY8KCUw/v-deo.html)
    13. Collaborative Filtering (ua-cam.com/video/RVJV8VGa1ZY/v-deo.html)
    14. Python Exercise on kNN and PCA (ua-cam.com/video/40B8D9OWUf0/v-deo.html)
    Bayes
    16. Baiyesian Learning (ua-cam.com/video/E3l26bTdtxI/v-deo.html)
    17. Naive Bayes (ua-cam.com/video/5WCkrDI7VCs/v-deo.html)
    18. Bayesian Network (ua-cam.com/video/480a_2jRdK0/v-deo.html)
    19. Python Exercise on Naive Bayes (ua-cam.com/video/XkU09vE56Sg/v-deo.html)
    Logistics Regession and SVM
    20. Logistics Regression (ua-cam.com/video/CE03E80wbRE/v-deo.html)
    21. Introduction to Support Vector Machine (ua-cam.com/video/gidJbK1gXmA/v-deo.html)
    22. The Dual Formation (ua-cam.com/video/YOsrYl1JRrc/v-deo.html)
    23. SVM Maximum Margin with Noise (ua-cam.com/video/WLhvjpoCPiY/v-deo.html)
    24. Nonlinear SVM and Kernel Function (ua-cam.com/video/GcCG0PPV6cg/v-deo.html)
    25. SVM Solution to the Dual Problem (ua-cam.com/video/Z0CtYBPR5sA/v-deo.html)
    26. Python Exercise on SVM (ua-cam.com/video/w781X47Esj8/v-deo.html)
    Neural Networks
    27. Introduction to Neural Networks (ua-cam.com/video/zGQjh_JQZ7A/v-deo.html)
    28. Multilayer Neural Network (ua-cam.com/video/hxpGzAb-pyc/v-deo.html)
    29. Neural Network and Backpropagation Algorithm (ua-cam.com/video/T6WLIbOnkvQ/v-deo.html)
    30. Deep Neural Network (ua-cam.com/video/pLPr4nJad4A/v-deo.html)
    31. Python Exercise on Neural Networks (ua-cam.com/video/kTbY20xlrbA/v-deo.html)
    Computational Learning Theory
    32. Introduction to Computational Learning Theory (ua-cam.com/video/8hJ9V9-f2J8/v-deo.html)
    33. Sample Complexity: Finite Hypothesis Space (ua-cam.com/video/nm4dYYP-SJs/v-deo.html)
    34. VC Dimension (ua-cam.com/video/PVhhLKodQ7c/v-deo.html)
    35. Introduction to Ensembles (ua-cam.com/video/nelJ3svz0_o/v-deo.html)
    36. Bagging and Boosting (ua-cam.com/video/MRD67WgWonA/v-deo.html)
    Clustering
    37. Introduction to Clustering (ua-cam.com/video/CwjLMV52tzI/v-deo.html)
    38. Kmeans Clustering (ua-cam.com/video/qg_M37WGKG8/v-deo.html)
    39. Agglomerative Clustering (ua-cam.com/video/NCsHRMkDRE4/v-deo.html)
    40. Python Exercise on means Clustering (ua-cam.com/video/qs7vES46Rq8/v-deo.html)
    Tutorial I (ua-cam.com/video/uFydF-g-AJs/v-deo.html)
    Tutorial II (ua-cam.com/video/M6HdKRu6Mrc/v-deo.html )
    Tutorial III (ua-cam.com/video/Ui3h7xoE-AQ/v-deo.html)
    Tutorial IV (ua-cam.com/video/3m7UJKxU-T8/v-deo.html)
    Tutorial VI (ua-cam.com/video/b3Vm4zpGcJ4/v-deo.html)
    Solution to Assignment 1 (ua-cam.com/video/qqlAeim0rKY/v-deo.html)

  • @Creative_arts_center
    @Creative_arts_center 2 роки тому +1

    Madam lectures were very precious to me.l had followed her for the past 11 years through CD's.

  • @sayamnandy5855
    @sayamnandy5855 6 років тому +5

    Mam,
    your video is really superb. Can you please show us, how to run this collaborative model on R?.

  • @ajayprajapati2453
    @ajayprajapati2453 5 років тому +2

    Respected Madam,
    Very nice teaching.

  • @41abhishek
    @41abhishek 5 років тому +2

    Mam.. I am having one doubt...
    Lets say user U1 and U2 is similar and there Pearson correlation is 1. But their scale is different...
    Example.......
    User U1 ratting => 1.5, 2.0, 2.5, 3.0, 3.5
    , 3.6
    User U2 ratting => 0.5, 1.5, 2.5, 3.5, 4.5, ??
    Now for user U2, if I apply the p(u,i) .... Then for user U2 it will return 3.6 [2.5 + 1*(3.6-2.5)/1].... But it should be 4.7
    Am I making any mistake?

  • @adityabikramarandhara9477
    @adityabikramarandhara9477 3 роки тому

    Nice and easy explanation

  • @MMphotography1996
    @MMphotography1996 6 років тому +1

    thanks a lot maam.. It was a great intro.!

  • @sunderrajan6172
    @sunderrajan6172 7 років тому +2

    A real world example would help the viewer to understand better.

    • @Pattnaik03420
      @Pattnaik03420 4 роки тому +3

      in real world you wouldn't find any structure data...you have to clean that dump, then you can decide which approach you can go for..i am working for a comp..i follow svd approach..its all depend on the data set. believe me the most hectic thing is to clean that data set..

    • @kisholoymukherjee
      @kisholoymukherjee 2 роки тому

      @@Pattnaik03420 what methods do you use for cleaning the dataset in solving real problems in the company