Bayesian Network

Поділитися
Вставка
  • Опубліковано 15 гру 2024

КОМЕНТАРІ • 22

  • @dibyendurb
    @dibyendurb 4 роки тому +7

    I was doing an ASU Masters and shooting myself in the head to understand causality from the Professor Lecture and the sheer ambiguity in it and then I found this gem. Thank You.

  • @lipsachhotray1021
    @lipsachhotray1021 6 років тому +15

    the best lecture on bayesian network! thank you so much madam!

    • @umang9997
      @umang9997 2 роки тому +1

      I did not understand the lecture fully.
      Did understand some parts though.
      What did you study before for understanding these topics?

  • @tsitsosephapo5880
    @tsitsosephapo5880 5 років тому +2

    Prof Sudeshna Sarkar! This is so wonderful explanation ever on bayesian network, now I see the light.

  • @mdtanvirrahman6801
    @mdtanvirrahman6801 5 років тому +4

    Thanks prof. So far the best lecture in youtube for bayesian network!!!

  • @JC-nx5xx
    @JC-nx5xx 5 років тому +2

    Thank you for making me understand the BBN in simple way.

  • @sanchitsharma7472
    @sanchitsharma7472 5 років тому +1

    thank you so much madam ,excellent explaination

  • @itneka
    @itneka 6 років тому +1

    Thanks a ton ma'am. This will help me in my office project :)

  • @South_UPSC_Wallah
    @South_UPSC_Wallah 6 років тому +4

    ma'am in belief network diagram if late for meeting then meeting postponed ?

  • @ramum5424
    @ramum5424 6 років тому +4

    Starts at 3:00

  • @tolifeandlearning3919
    @tolifeandlearning3919 2 роки тому

    Great lecture

  • @rekhakushwaha7224
    @rekhakushwaha7224 6 років тому +3

    How "late for work" has probability 4 ?

    • @lipsachhotray1021
      @lipsachhotray1021 6 років тому +3

      it has two immediate parents hence its probability is affected by 2^2 ways that is 4 ways.

    • @abhijeetsharma5715
      @abhijeetsharma5715 3 роки тому +3

      It does not have a probability 4. Prof is telling that there are 4 conditional probabilities associated with it...the 4 conditions can be (traffic-jam=1 & late-wake-up=1), (traffic-jam=0 & late-wake-up=0), (traffic-jam=1 & late-wake-up=0), (traffic-jam=0 & late-wake-up=1). So, the associated conditional probabilities will be P("late-for-work=1" | (traffic-jam=1 & late-wake-up=1)) and similarly 3 others.

  • @statisticsforbeginners6841
    @statisticsforbeginners6841 3 роки тому

    Mam is this necessary the variables should be boolean

  • @shubhammishra4565
    @shubhammishra4565 6 років тому

    Please make me correct if I am wrong in my understanding, late meeting and late wakeup are not conditionally independent given the value of late for work

    • @abhijeetsharma5715
      @abhijeetsharma5715 3 роки тому

      No. At 8:58(& 18:07), professor clearly tells that "given late-for-work", "late-for-meeting" and "woke-up-late" are conditionally independent,

  • @harshvardhan184
    @harshvardhan184 7 років тому

    Ma'am, would you be able to give a lecture on python exercise on bayesian network?

  • @atreyatata982
    @atreyatata982 5 років тому +2

    She used to read slides which makes me easy to read them ! Trust me its way better than her explanation 😂😂! If you wanna know why ? See AI videos of her

  • @AjazAnsari-zl9yp
    @AjazAnsari-zl9yp 7 років тому

    great