Matrix Factorization in Recommendation Systems | Netflix Recommend Movie

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 39

  • @MultiWarrr
    @MultiWarrr 8 місяців тому

    Your smile while illustrating very complex idea is really really reliefing

  • @Mars.2024
    @Mars.2024 10 місяців тому

    Thank you for your simple and effective way of teaching . I'm a beginner but now i have a better view of recommandar system .

  • @ghousiafatimauxd2418
    @ghousiafatimauxd2418 2 роки тому +4

    At 9:24 how did you get 15 elements? please elaborate

  • @manoharnookala5341
    @manoharnookala5341 2 роки тому +2

    Thank you so much sir, i got full clarity on matrix factorization. and your explanation is very easy to understand

    • @binodsuman
      @binodsuman  2 роки тому +1

      Thank you for nice words. Keep learning !!

  • @RohanDreamerz
    @RohanDreamerz 4 роки тому +3

    Good explanation. Thank you! Please do a full end-to-end recommender system model with python using this technique.

  • @sachinkun21
    @sachinkun21 6 місяців тому

    Hey Binod. Loved it. Keep up the great work.

  • @manideepgupta2433
    @manideepgupta2433 3 роки тому +2

    Sir, You're Amazing!! Thanks for the explanation!

  • @Tabaraei
    @Tabaraei 4 роки тому +4

    Brilliant explanation! Keep going ..

  • @shuyaebkhan1603
    @shuyaebkhan1603 Рік тому +1

    Are 15 elements kaha se aaya ?

  • @vishavgupta3717
    @vishavgupta3717 8 місяців тому

    you are awesome sir. one of the best explanation

  • @maralazizi
    @maralazizi 2 роки тому

    Thank you so much! it was very helpful!

  • @antsathemathteacher
    @antsathemathteacher 2 роки тому

    I really like the way you explained it... Good job. Thank you

  • @muaadh_abdoalsabri1941
    @muaadh_abdoalsabri1941 4 роки тому +1

    wow, amazing explanation thank you so much, Sir.

  • @vinnakotasaranchaitanya5461
    @vinnakotasaranchaitanya5461 3 роки тому +1

    Nice explanation sir👍

    • @binodsuman
      @binodsuman  3 роки тому

      Glad to hear Vinnakota, this Matrix Factorization video helped you. Keep Learning and thank you for your nice words !!

  • @keerthip3521
    @keerthip3521 3 місяці тому +1

    super sir

  • @arnabmaity7505
    @arnabmaity7505 3 роки тому

    Thank you sir. I love the way you explain

  • @swadeshification
    @swadeshification 4 роки тому +1

    Great Explanation Sir !!

    • @binodsuman
      @binodsuman  4 роки тому

      Hi Swadesh, Thank you for nice words and suggestion. Glad to know that this Matrix Factorization Recommendation system video helped you to learn. Keep Learning !!

  • @sakahamuru
    @sakahamuru 4 роки тому +3

    at 9:23 , you say we have 15 elements but actually it's 12 which is smaller than the total of the factorized matrices (which is 14). How is this better? or am I missing something?

    • @pathfinder9547
      @pathfinder9547 3 роки тому

      bhai answer mila iska? mujhe bhi yahi doubt hai.

    • @sakahamuru
      @sakahamuru 3 роки тому

      @@pathfinder9547 For much larger sets of data, for example 1000 users and 1000 items being rated, UserXItem ratings matrix would be of size 1000000. But if you do matrix factorization with ~30 latent features you could get 1000*30 + 1000*30 = 60000 size matrix which would greatly save space to represent essentially the same matrix. I think in the video because it is a toy example this logic was not clear.

    • @pathfinder9547
      @pathfinder9547 3 роки тому

      @@sakahamuru These 30 latent features should be linearly independent,right? The rest 70 would be a function of a few of these features ?

    • @sakahamuru
      @sakahamuru 3 роки тому +2

      @@pathfinder9547 im not sure what '70' you're talking about. But the 1000*30 matrix of users*features and 30*1000 matrix of features*items will matrix multiply to represent the full 1000*1000 matrix, so very little information is lost in matrix factorization via gradient descent. The 'factor' matrixes map the complex relationships between users and items via these 30 generated features. The '30' number can be increased or decreased depending on the complexity of the relationships. A more complex relationship will have more latent features, and simpler could have very few latent features. The number of latent features is a hyperparameter which can be optimized for finding the best sized factor matrices.

    • @mdgazuruddin214
      @mdgazuruddin214 2 роки тому

      In 11:23 , he Clear elemnet matter where right side have less element han left side.

  • @thechhavibansal
    @thechhavibansal 3 роки тому +1

    thanks sir

    • @binodsuman
      @binodsuman  3 роки тому +1

      You are welcome Chhavi. Good to know, this Matrix Factorization Tutorial helped you. This is one of the my favourite videos, I had put a lots of effort to add many more concept in one video. Keep Learning !!

  • @122arvind
    @122arvind 4 роки тому

    where is next code video not getting

  • @Abhi-qf7np
    @Abhi-qf7np 3 роки тому

    Nice explanation.

  • @seongchulkwon1762
    @seongchulkwon1762 3 роки тому +1

    greate

  • @manasapachavanitap393
    @manasapachavanitap393 4 роки тому

    Super sir..

  • @manashi_100
    @manashi_100 Рік тому

    thank you

  • @abraramirhussain6778
    @abraramirhussain6778 3 роки тому +1

    Good explanation sir!

    • @binodsuman
      @binodsuman  3 роки тому

      Happy to hear Abrar Amir, this Matrix Factorization videos Tutorial helped you. Keep Learning !! @binodsumanacademy

  • @rajanchoudhary1912
    @rajanchoudhary1912 4 роки тому +1

    great job done!!!
    do with python code

    • @binodsuman
      @binodsuman  4 роки тому +2

      Thank you Rajan for nice words and suggestion. Will try to upload one video with Python code and really happy to know that this Matrix Factorization Recommendation system video helped you to learn. Keep Learning !!

  • @FlexingD999
    @FlexingD999 2 роки тому

    tqvrm