k-Nearest Neighbour

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 43

  • @princejainist
    @princejainist 5 років тому +17

    NPTEL is serving nation in true sense, we should learn from them.

  • @mayanksj
    @mayanksj 7 років тому +18

    Machine Learning by Prof. Sudeshna Sarkar
    Basics
    1. Foundations of Machine Learning (ua-cam.com/video/BRMS3T11Cdw/v-deo.html)
    2. Different Types of Learning (ua-cam.com/video/EWmCkVfPnJ8/v-deo.html)
    3. Hypothesis Space and Inductive Bias (ua-cam.com/video/dYMCwxgl3vk/v-deo.html)
    4. Evaluation and Cross-Validation (ua-cam.com/video/nYCAH8b5AQ0/v-deo.html)
    5. Linear Regression (ua-cam.com/video/8PJ24SrQqy8/v-deo.html)
    6. Introduction to Decision Trees (ua-cam.com/video/FuJVLsZYkuE/v-deo.html)
    7. Learning Decision Trees (ua-cam.com/video/7SSAA1CE8Ng/v-deo.html)
    8. Overfitting (ua-cam.com/video/y6SpA2Wuyt8/v-deo.html)
    9. Python Exercise on Decision Tree and Linear Regression (ua-cam.com/video/lIBPIhB02_8/v-deo.html)
    Recommendations and Similarity
    10. k-Nearest Neighbours (ua-cam.com/video/PNglugooJUQ/v-deo.html)
    11. Feature Selection (ua-cam.com/video/KTzXVnRlnw4/v-deo.html )
    12. Feature Extraction (ua-cam.com/video/FwbXHY8KCUw/v-deo.html)
    13. Collaborative Filtering (ua-cam.com/video/RVJV8VGa1ZY/v-deo.html)
    14. Python Exercise on kNN and PCA (ua-cam.com/video/40B8D9OWUf0/v-deo.html)
    Bayes
    16. Baiyesian Learning (ua-cam.com/video/E3l26bTdtxI/v-deo.html)
    17. Naive Bayes (ua-cam.com/video/5WCkrDI7VCs/v-deo.html)
    18. Bayesian Network (ua-cam.com/video/480a_2jRdK0/v-deo.html)
    19. Python Exercise on Naive Bayes (ua-cam.com/video/XkU09vE56Sg/v-deo.html)
    Logistics Regession and SVM
    20. Logistics Regression (ua-cam.com/video/CE03E80wbRE/v-deo.html)
    21. Introduction to Support Vector Machine (ua-cam.com/video/gidJbK1gXmA/v-deo.html)
    22. The Dual Formation (ua-cam.com/video/YOsrYl1JRrc/v-deo.html)
    23. SVM Maximum Margin with Noise (ua-cam.com/video/WLhvjpoCPiY/v-deo.html)
    24. Nonlinear SVM and Kernel Function (ua-cam.com/video/GcCG0PPV6cg/v-deo.html)
    25. SVM Solution to the Dual Problem (ua-cam.com/video/Z0CtYBPR5sA/v-deo.html)
    26. Python Exercise on SVM (ua-cam.com/video/w781X47Esj8/v-deo.html)
    Neural Networks
    27. Introduction to Neural Networks (ua-cam.com/video/zGQjh_JQZ7A/v-deo.html)
    28. Multilayer Neural Network (ua-cam.com/video/hxpGzAb-pyc/v-deo.html)
    29. Neural Network and Backpropagation Algorithm (ua-cam.com/video/T6WLIbOnkvQ/v-deo.html)
    30. Deep Neural Network (ua-cam.com/video/pLPr4nJad4A/v-deo.html)
    31. Python Exercise on Neural Networks (ua-cam.com/video/kTbY20xlrbA/v-deo.html)
    Computational Learning Theory
    32. Introduction to Computational Learning Theory (ua-cam.com/video/8hJ9V9-f2J8/v-deo.html)
    33. Sample Complexity: Finite Hypothesis Space (ua-cam.com/video/nm4dYYP-SJs/v-deo.html)
    34. VC Dimension (ua-cam.com/video/PVhhLKodQ7c/v-deo.html)
    35. Introduction to Ensembles (ua-cam.com/video/nelJ3svz0_o/v-deo.html)
    36. Bagging and Boosting (ua-cam.com/video/MRD67WgWonA/v-deo.html)
    Clustering
    37. Introduction to Clustering (ua-cam.com/video/CwjLMV52tzI/v-deo.html)
    38. Kmeans Clustering (ua-cam.com/video/qg_M37WGKG8/v-deo.html)
    39. Agglomerative Clustering (ua-cam.com/video/NCsHRMkDRE4/v-deo.html)
    40. Python Exercise on means Clustering (ua-cam.com/video/qs7vES46Rq8/v-deo.html)
    Tutorial I (ua-cam.com/video/uFydF-g-AJs/v-deo.html)
    Tutorial II (ua-cam.com/video/M6HdKRu6Mrc/v-deo.html )
    Tutorial III (ua-cam.com/video/Ui3h7xoE-AQ/v-deo.html)
    Tutorial IV (ua-cam.com/video/3m7UJKxU-T8/v-deo.html)
    Tutorial VI (ua-cam.com/video/b3Vm4zpGcJ4/v-deo.html)
    Solution to Assignment 1 (ua-cam.com/video/qqlAeim0rKY/v-deo.html)

  • @abhijeetsharma5715
    @abhijeetsharma5715 3 роки тому +4

    36:07 in the way that it is shown in the slides, I think if kernel-width is large, we are effectively considering smaller region(instead of larger) since the weights will be more damped/smaller now. Correct me if I am wrong.

  • @amrutgirase5821
    @amrutgirase5821 6 років тому +4

    Hi Ma'am,
    U r such a great teacher, ur teaching method helped me a lot.
    Thank you so much for making such great videos.

  • @dhruvsanghvi5562
    @dhruvsanghvi5562 Рік тому

    Great Instructor , poor cameraman

  • @shubhgajjar8782
    @shubhgajjar8782 Рік тому +1

    Nice teaching

  • @krzb6725
    @krzb6725 Рік тому

    Thank you Prof.Sudeshna Sarkar & Anirban Santara!

  • @m00ndr0p
    @m00ndr0p 6 років тому +1

    Thank you for this great video. It has helped me immensely !

  • @AdityaSingh-mx8lw
    @AdityaSingh-mx8lw 7 років тому +1

    Thank you, Mam you are teaching very good, but lectures are not in a sequence and missing.

  • @dhoomketu731
    @dhoomketu731 6 років тому

    Your teaching methodology is simply amazing ma'am.

  • @Rizwankhan2000
    @Rizwankhan2000 3 роки тому

    Lectures on Machine learning in English / HIndi: ua-cam.com/play/PLGeIxG41Dh351Tapkofz0WktplooH5C6s.html

  • @ashishshrma
    @ashishshrma 4 роки тому +3

    how do we get training error in this, when we're not even training?

    • @volleysmackz5960
      @volleysmackz5960 Рік тому

      ig you just compute avg distance to k-nearest neighbors in the training set itself for the training point. so for 1-nearest error is 0 as point is first closest to itself and its an accurate estimation!

  • @Creative_arts_center
    @Creative_arts_center 2 роки тому

    Machine learning made easy with her

  • @jaytube277
    @jaytube277 6 років тому

    Should we always have K as odd value ? This is because we classify x based on the class to which majority of the nearest neighbors belong. If we have even value of K then there is a possibility that equal number of neighbors belong to multiple classes.

    • @HimanshuKumar-cq8zq
      @HimanshuKumar-cq8zq 6 років тому

      If you have 2 class chose odd k and k should not be the multiple of class.

  • @rajnishkumarrobin7055
    @rajnishkumarrobin7055 6 років тому +2

    what does "classes are spherical" means?

    • @kingofshorekishore
      @kingofshorekishore 3 роки тому +2

      it means the distribution of data in this case our training data have a spherical form. it is distributed throughout the x-y plane.

  • @deepakkumarshukla
    @deepakkumarshukla 4 роки тому

    Thank you M'am!

  • @BarqKadapavi
    @BarqKadapavi 3 роки тому

    Thank you Madam!

  • @anugyamishra4893
    @anugyamishra4893 6 років тому

    I have a question , for new instance we have only x value , so basically (x,0) type of value and it will always be nearest to the lowest y of that x or some( x2,0) type of neighboutr.

    • @anugyamishra4893
      @anugyamishra4893 6 років тому

      Please let me know if my question is unclear the main point we dont have Y then how distance is calculated

    • @HimanshuKumar-cq8zq
      @HimanshuKumar-cq8zq 6 років тому +1

      You are lil bit confused and that's totally okay, for a new x (Instance ) of course we don't have y and that's what we are trying to find, by applying knn let's say for(k=3) we found 3 nearest points (these points came after applying euclidean distance ) and now the majority points will tell what should be our y.
      You can also think like that if 3 nearest neighbours have y=1, 2 , 2 then majority is 2 so the y for new instance (x) will also belong to majority class which is 2.

  • @nitinkulkarni02
    @nitinkulkarni02 7 років тому

    Great Session

  • @skyalrazzaq6160
    @skyalrazzaq6160 6 років тому

    Great Lecture

  • @OmkaarMuley
    @OmkaarMuley 7 років тому +1

    the way she pronounces ALGORITHM is funny! :D :D

    • @705pratik9
      @705pratik9 3 роки тому +2

      Yep. Because you don't know how to pronounce it.
      Ma'am is speaking the finest English. Go check out her profile and you'll know how good she is

    • @OmkaarMuley
      @OmkaarMuley 3 роки тому

      @@705pratik9 okay!

    • @705pratik9
      @705pratik9 3 роки тому

      @@OmkaarMuley Yep take care man. Always wear a mask.

  • @letslearnjava1753
    @letslearnjava1753 4 роки тому

    Plot of decision boundaries using MATLAB:
    ua-cam.com/video/uql5RbM9GHI/v-deo.html

  • @zulfiqarali-zq1rg
    @zulfiqarali-zq1rg 4 роки тому

    thankyou dear mam

  • @jaggis4914
    @jaggis4914 5 років тому +2

    You got even the heading of the video wrong Prof. The algorithm is called k-Nearest neighbors!

  • @prasanthvarmac3120
    @prasanthvarmac3120 4 роки тому

    Text boot or else PDF can you send me link for downloading ur PDF materials please mam. It is useful for my project work

    • @nishah4058
      @nishah4058 2 роки тому

      U can download these lecture transcript from neptel site

  • @swathikumari7073
    @swathikumari7073 6 років тому +1

    try to give the numbering for lectures

    • @shubhampatial2278
      @shubhampatial2278 6 років тому +1

      okk Swathi

    • @swathikumari7073
      @swathikumari7073 6 років тому

      is these videos are published by you??

    • @shubhampatial2278
      @shubhampatial2278 6 років тому

      Swathi numbering means what??
      you mean like alphabets the way kids starts in order..
      m sry plz dont mind but its like that and videos are not published by me.

    • @swathikumari7073
      @swathikumari7073 6 років тому +2

      it does not mean like that .....i mean try to publish in an appropriate orde.....it is better to understand others in a correct way...thank you

    • @swathikumari7073
      @swathikumari7073 6 років тому +1

      No thanks