Overfitting

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ • 20

  • @abenalarbi-odam4885
    @abenalarbi-odam4885 5 років тому +4

    I've watched so many videos on UA-cam!! YOU EXPLAINED IT IN THE BEST WAY!! THANK YOU.

  • @shahisthapirjade6308
    @shahisthapirjade6308 6 років тому +4

    Your videos are superb mam. you have explained so well! thankyou so much! 😊

  • @mahaveerthakur9864
    @mahaveerthakur9864 7 років тому +2

    Very informative. Nice way of teaching

  • @harinis662
    @harinis662 5 років тому +3

    Happy teachers day mam.ur teaching is so good.tq

  • @utkarshgupta6258
    @utkarshgupta6258 3 роки тому

    13:19 can we use entropy as a parameter for pruning the tree?

  • @sreecharanable
    @sreecharanable 4 роки тому

    very nice way of teaching ma`am.

  • @mayankbhagat4154
    @mayankbhagat4154 6 років тому

    Thanks mam. Very informative video.

  • @hemantdas9546
    @hemantdas9546 4 роки тому

    What is the error metric?

  • @tanmaysinha987
    @tanmaysinha987 5 років тому

    awesome

  • @vipnirala
    @vipnirala 3 роки тому

    Is there any way to download slides of this lecture series?

    • @rushan3030
      @rushan3030 4 місяці тому

      only way is to enroll in their course in nptel swayam which is a 1000 per course

  • @BiswajithGopinathan
    @BiswajithGopinathan 7 років тому

    Can we confirm whether overfitting is same as high variance?

    • @abhishekp9423
      @abhishekp9423 7 років тому +2

      Yes , high variance of model causes over-fitting. Because you are trying fit each training examples. This will lead a very high order polynomial and a high order polynomial function will cause a weird curve or classifier which tries to fit all the training examples and hence the model will cause high variance.

    • @vktonline
      @vktonline 6 років тому

      yes

    • @awfulprogrammer619
      @awfulprogrammer619 4 роки тому

      variance is the difference in fits between the data sets and in overfitting the test errror is more than training error resulting in differences and Hence, results in high variance, while with low bias.

  • @khushrajrathore4050
    @khushrajrathore4050 3 роки тому +1

    Check out code with harry playlist for ml and u rock