A Fun Homemade Functional Equation

Поділитися
Вставка
  • Опубліковано 8 січ 2025

КОМЕНТАРІ • 26

  • @s1ng23m4n
    @s1ng23m4n 21 годину тому +8

    6*f(7) + f(15) = 36
    2*f(3) + f(7) = 4
    0*f(1) + f(3) = 0
    f(3) = 0
    f(7) = 4
    f(15) = 36 - 24 = 12

  • @dapulse7147
    @dapulse7147 13 годин тому +1

    Whether there are solutions beyond the polinomial function is the most interesting part of the problem. I'm a little sad that it's not covered in the video.

    • @SyberMath
      @SyberMath  4 години тому

      Sorry. I don't know how to do it

  • @elecbertelecbert-l5e
    @elecbertelecbert-l5e 16 годин тому

    Thanks keep going I always watch you your channel is stunning 🎉🎉🎉🎉

  • @scottleung9587
    @scottleung9587 20 годин тому +1

    Nice!

  • @chathurangasameera6722
    @chathurangasameera6722 3 години тому

    I have a nother idea,
    Let´s suppose fx=ax+b
    Then substitute the equation and you can get a and b values ,a=1/b=-3
    And after you can find any function value ,
    But question is f(15)
    Further fx=x-3
    Therefore f15=15-3=12 💀

  • @arekkrolak6320
    @arekkrolak6320 18 годин тому

    You should be able to solve it in memory by taking x=0 then x=2 then x=6

  • @giuseppemalaguti435
    @giuseppemalaguti435 20 годин тому

    x=0..f(3)=0...x=2..2f(3)+f(7)=4=>f(7)=4..x=6...6f(7)+f(15)=36=>f(15)=36-24=12

  • @coreyyanofsky
    @coreyyanofsky 19 годин тому

    without watching:
    let x = 0, then f(3) = 0
    x = 2, 2f(3) + f(7) = f(7) = 4
    x = 6, 6f(7) + f(15) = 24 + f(15) = 36
    therefore f(15) = 12

  • @DrQuatsch
    @DrQuatsch 14 годин тому

    If we use x = 0, we will be able to cancel a lot of things, because they will be 0 thanks to the terms including a regular x.
    0 * f(0 + 1) + f(2 * 0 + 3) = 0^2 ---> f(3) = 0.
    Now that we know that f(3) = 0, and we used x in such a way that the second term became f(3), now we can choose x in such a way that the first term includes f(3). This means that x + 1 = 3, so x = 3 - 1 = 2. So we will fill in x = 2 everywhere:
    2 * f(2 + 1) + f(2 * 2 + 3) = 2^2. This gives 2 * f(3) + f(7) = 4. f(3) = 0, so we get f(7) = 4.
    Now we can repeat this process to get f(7) in the first term: x + 1 = 7, so x = 7 - 1 = 6. Fill in x = 6:
    6 * f(6 + 1) + f(2 * 6 + 3) = 6^2 --> 6 * f(7) + f(15) = 36. f(7) = 4, so 6 * 4 + f(7) = 36 --> 24 + f(15) = 36 --> f(15) = 36 - 24 = 12.
    This was the first thing that stood out to me to do, and it got me to f(15), because it seemed somewhat obvious that it would.

  • @rakenzarnsworld2
    @rakenzarnsworld2 12 годин тому

    15f(16)+f(33)=225
    f(2)+f(5)=1
    2f(3)+f(7)=4
    3f(4)+f(9)=9
    4f(5)+f(11)=16
    4f(2)+4f(5)=4
    f(11)-4f(2)=12
    5f(6)+f(13)=25
    6f(7)+f(15)=36
    12f(3)+6f(7)=24
    f(15)-12f(3)=12
    7f(8)+f(17)=49
    8f(9)+f(19)=64
    24f(4)+8f(9)=72
    f(19)-24f(4)=-8
    f(3)=0, f(7)=4, f(15)=12
    f(x)=x-3

  • @yurenchu
    @yurenchu 19 годин тому +1

    I solved f(15) in the second method, but I wondered if we could determine a closed form solution for f(x). The way you derived f(x) = x - 3 is very clever! Great video!

    • @SyberMath
      @SyberMath  17 годин тому

      Thanks

    • @FranciszekKlyk
      @FranciszekKlyk 17 годин тому

      Unless you assume that f is continous. There are infinitely many solutions

    • @yurenchu
      @yurenchu 16 годин тому

      @FranciszekKlyk Good point. Assuming f(1) is finite, are x = -1 and x = (2^k - 1) for integer k > 1 the only values of x for which we can unambiguously determine f(x) without further boundary conditions?

  • @brockobama257
    @brockobama257 15 годин тому

    12

  • @Don-Ensley
    @Don-Ensley 19 годин тому

    problem
    x f(x+1) + f(2x+3) = x²
    Assume f(x) is a polynomial.
    Solve by a method of unknown coefficients.
    Let
    f(x) = a x² + b x + c
    Replace in the equation.
    x [a (x + 1)² + b(x + 1)+ c] +
    a (2x+3)² + b (2x +3) + c = x²
    Expand.
    a x³ + (6a + b - 1) x² +
    (7a + 3b + c) x + 9a + 3b + c = 0
    Solve coefficient system of equations.
    a = 0
    b - 1 = 0
    3 b + c = 0
    b = 1
    c = -3
    f(x) = x - 3
    f(15) = 12
    answer
    f(15) = 12

    • @davidseed2939
      @davidseed2939 3 години тому

      I think you should show why you choose certain values of x rather than just saying if x=2 then ...
      but why 2.
      my method ...
      xf(x+1) +f(2x+3)= x^2
      finding f(13)
      we note the recursive nature and hope that using reducing values of the argument of f will give us a solution.
      f(2x+3)= x^2-xf(x+1)
      choose x to.get f(15) on.lhs
      x=6
      f(15)=36-6f(7)
      now choose x to get f7) on the lhs
      x=2
      f(7)=4-2f(3)
      now choose x to get f(3) on lhs
      x=0
      f(3) =0
      substitue back
      f(7)=4 -0
      f(13)=36-6f(7)
      f(13)=36-24 =12
      in thia way we dont just guess values of z
      we calculate them.
      if you didn't spot that another approach would be to try x=0,1,2,3,... and see what you get
      another approach is to change the dummy variable(x)
      eg choose a=2x+3 or a=x+1. doesnt gain anything here.
      but cant assume linear

  • @yurenchu
    @yurenchu 19 годин тому

    x*f(x+1) + f(2x+3) = x²
    ==>
    f(2x+3) = x² - x*f(x+1)
    f(15) = f(2*6+3) =
    = 6² - 6*f(6+1)
    = 6² - 6*f(7)
    = 6² - 6*f(2*2+3)
    = 6² - 6*[ 2² - 2*f(2+1) ]
    = 6² - 6*[ 2² - 2*f(3) ]
    = 6² - 6*[ 2² - 2*f(2*0 + 3) ]
    = 6² - 6*[ 2² - 2*[ 0² - 0*f(0+1) ] ]
    = 6² - 6*[ 2² - 2*[ 0² - 0*f(1) ] ]
    = 6² - 6*[ 2² - 2*[ 0 ] ]
    = 6² - 6*[ 2² - 0 ]
    = 6² - 6*[ 4 ]
    = 6² - 24
    = 36 - 24
    = 12