An Interesting Homemade Differential Equation

Поділитися
Вставка
  • Опубліковано 7 січ 2025

КОМЕНТАРІ • 12

  • @scottleung9587
    @scottleung9587 День тому +1

    Nice!

  • @JohnsonIdris112
    @JohnsonIdris112 18 годин тому

    And you did forget to show us how you came up with the problem 😅

  • @Hemicubesquare
    @Hemicubesquare 16 годин тому +1

    How about this?
    actually
    y'=+-(y^4-y^2+c)^1/2
    if c=1/4
    y'=+-(y^4-y^2+1/4)^1/2
    =+-(y^2-1/2)^(2×1/2)
    =+-(y^2-1/2)
    dy/dx=+-(y^2-1/2)
    if y=+-(1/2)^1/2
    dy/dx=0
    dy/+-(y^2-1/2)=dx
    but
    1/(y^2-1/2)+
    =[1/{y-(1/2)^(1/2)}-1/{y+(1/2)^(1/2)}]2^(-1/2)
    let's do integral about dy/dx
    +-{ln|y-(1/2)^(1/2)|-ln|y+(1/2)^(1/2)|}2^(-1/2)
    =+-ln|{y-(1/2)^(1/2)}/{y+(1/2)^(1/2)}|2^(-1/2)
    =x+c
    so
    e^{+-(x+c)2^(1/2)}=|{y-(1/2)^(1/2)}/{y+(1/2)^(1/2)}|
    =|{1-2^(1/2)/{y+(1/2)^(1/2)}|
    if {1-2^(1/2)/{y+(1/2)^(1/2)}>0
    y>(1/2)^(1/2) or y

  • @davidblauyoutube
    @davidblauyoutube 5 годин тому

    At 7:15, substitute u = y^2+1/3 and simplify to obtain (u')^2 = 4u^3 + 4(2c1 -1/3)u + 4(2c1 /3 - 2/27) = 4 u^3 - g2 u - g3. Now if c1 = 0 or 1/8 then the original equation can be factored and a simpler solution can be found (as in the video and the other comments). These solutions correspond to g2^3 - 27 g3^2 = 0 (see the link below). Otherwise, the general solution to this differential equation is the Weierstrass elliptic function u = ℘(x), so y = ±√(℘(x)-1/3).
    en.wikipedia.org/wiki/Weierstrass_elliptic_function

  • @giuseppemalaguti435
    @giuseppemalaguti435 День тому

    Posto dy/dx=u... l'equazione risulta (du/dy)u=2y^3-y...integro...u^2/2=2y^4/4-y^2/2+c..u=√(y^4-y^2+2c)...quindi X+C2=INT(dy/√(y^4-y^2+2c)...poi bisogna un po' lavorare..

  • @Christopher-e7o
    @Christopher-e7o День тому

    X,2×+5=8

  • @holyshit922
    @holyshit922 День тому

    F(y'',y'y) = 0
    so it is not so difficult to solve
    y' = u(y) is the standard substitution

  • @Roq-stone
    @Roq-stone День тому

    Please don’t say, “multiply both sides by ‘dx’”,
    It is integrate both sides with respect to x.

  • @mcwulf25
    @mcwulf25 4 години тому

    You could have put y=0 and made it simpler still 😂😂😂.
    Thanks, nice trig solution.

  • @Don-Ensley
    @Don-Ensley День тому +2

    problem
    d² y/dx² = 2 y³-y
    Let
    p = dy/dx
    d² y/dx² = dp/dx
    Use the chain rule.
    d² y/dx² = (dp/dy)(dy/dx)
    Replace dy/dx with p.
    d² y/dx² = p (dp/dy)
    Replace d² y/dx² in equation.
    p (dp/dy) = 2 y³-y
    Integrate.
    ∫ p dp = ∫ (2 y³-y) dy
    p²/2 = 2 y⁴/ 4 - y²/ 2 + m
    . Where m is a constant of integration.
    p²/2 = y⁴/ 2 - y²/ 2 + m
    p² = y⁴ - y² + 2m
    p = ± √(y⁴ - y² + 2m)
    = dy/dx
    ∫ dy / √(y⁴ - y² + 2m)
    = ± ∫ dx
    = c ± x
    , where c is a constant of integration.
    Set m = 0. The non-0 m version is too complicated for this channel.
    ∫ dy / √(y⁴ - y²) = c ± x
    ∫ dy / [ y √(y² - 1) ] = c ± x
    Substitute
    t = √(y² - 1)
    dt = y dy / √(y² - 1)
    dt/y = dy / √(y² - 1)
    t² + 1 = y²
    dy / [ y √(y² - 1) ]
    = dt / y²
    = dt / (1 + t²)
    ∫ dt / (1 + t²)
    = c ± x
    tan⁻¹ t = c ± x
    t = tan (c ± x)
    √(y² - 1) = tan (c ± x)
    y² - 1 = tan² (c ± x)
    y² = 1 + tan² (c ± x)
    Use a trigonometric identity.
    y² = sec² (c ± x)
    y = ± sec (c ± x)
    secθ = 1 / cosθ
    It is even parity so sign does not commute to the argument. -cos(θ) cos(-θ)
    answer
    y ∈ { - sec (c - x),
    - sec (c + x),
    sec (c - x),
    sec (c + x),
    c ∈ ℝ }