Summing A Cool Infinite Series

Поділитися
Вставка
  • Опубліковано 7 січ 2025

КОМЕНТАРІ • 26

  • @Marcus-y1m
    @Marcus-y1m День тому +1

    4:17 mind blowing 🤯 . That was a genius observation. Thanks sir!

  • @MrGeorge1896
    @MrGeorge1896 23 години тому +4

    We can find the term for the sum of (n + 1)² * x^n even w/o differentiation just with the basic formula 1 + x² + x³ + ... = 1 / (1 - x).
    So 1 + 4x + 9x² + 16x³ + ... = (1 + 3x + 5x² + 7x³ + ...) * (1 + x + x² + x³ + ...) = (1 + 3x + 5x² + 7x³ + ...) / (1 - x)
    = (1 + 2x + 2x² + 2x³ + ...) * (1 + x + x² + x³ + ...) / (1 - x) = (1 + 2x + 2x² + 2x³ + ...) / (1 - x)²
    = ( -1 + 2 * (1 + x + x² + x³ + ...) ) / (1 - x)² = (-1 + 2 / (1 - x) ) / (1 - x)²
    = (x - 1 + 2) / (1 - x)³
    = (x + 1) / (1 - x)³

  • @ZachariusDackley
    @ZachariusDackley День тому +4

    I have a question. What are the key concepts i have to study to learn to solve this ? I am willing to review them first so that i could master this problem from the video. I am now starting to study math through UA-cam videos. A reply may help me a lot. This is the 3rd video i am watching of your channel. I appreciate your work Sir !

    • @nothinghere9576
      @nothinghere9576 День тому +5

      This solution uses differentiation, if you want to understand it, you should know about derivatives and antiderivatives, you study those in calculus. You also need formula for the sum of geometric series, you can review what geometric series is in general.

    • @sonicbreaker00
      @sonicbreaker00 16 годин тому

      What grade/class are you in ?

    • @SyberMath
      @SyberMath  2 години тому

      Basic differentiation, sum of geometric series, practice...

  • @doctorb9264
    @doctorb9264 20 годин тому

    Excellent work on these sum problems.

  • @guyhoghton399
    @guyhoghton399 23 години тому +1

    Sometimes it helps to multiply and then take the difference with series like these.
    Let *_S = 1²/7⁰ + 2²/7¹ + 3²/7² + ... + (n + 1)²/7ⁿ +_* ...
    ∴ _7S = 7 + 2²/7⁰ + 3²/7¹ + ... + (n + 2)²/7ⁿ +_ ...
    Taking the difference:
    _6S = 7 + (2² - 1²)/7⁰ + (3² - 2²)/7¹ + ... + [(n + 2)² - (n + 1)²]/7ⁿ +_ ...
    ⇒ _6S = 7 + Σ₀∞{(2n + 3)/7ⁿ}_
    ⇒ *_6S = 7 + 3Σ₀∞{1/7ⁿ} + 2Σ₀∞{n/7ⁿ}_* ... ①
    This has decomposed _S_ into a constant, a G.P. and a series that can be derived from the derivative of a G.P.
    Let *_f(x) = Σ₀∞{(x/7)ⁿ} = 1/(1 - x/7) = 7/(7 - x)_*
    ∴ _f(1) = Σ₀∞{1/7ⁿ}_
    _f'(x) = 7/(7 - x)² = Σ₀∞{nxⁿ⁻¹/7ⁿ}_
    ∴ _f'(1) = Σ₀∞{n/7ⁿ}_
    From ①:
    _6S = 7 + 3f(1) + 2f'(1)_
    ⇒ *_S = ⅙{7 + (3)(7/6) + (2)(7/36)} = 49/27_*

  • @paulortega5317
    @paulortega5317 10 годин тому

    In general n²(n+1)/(n-1)³, in this case n=7

  • @ciaucia156
    @ciaucia156 20 годин тому +2

    S - rS = S₁ = 1 + 3r + 5r² + 7r³ +…
    S₁- rS₁= S₂ = 1 + 2r + 2r² + 2r³ +… = 1 + 2r(1 + r + r² +…) = 1 + 2r/(1-r)
    S₁(1-r) = S(1-r)² = (1+r)/(1-r)
    S = (1+r)/(1-r)³

  • @msmbpc24
    @msmbpc24 День тому

    Nice trick.

  • @russellsharpe288
    @russellsharpe288 12 годин тому

    s = 1/1 + 4/7 + 9/49 + 16/343 +....
    s/7 = 1/7 + 4/49 + 9/343 + ...
    subtract two previous lines to find
    6s/7 = 1/1 + 3/7 + 5/49 + 7/343 +...
    6s/49 = 1/7 + 3/49 + 5/343 + ...
    subtract two previous lines to find
    36s/49 = 1/1 + 2/7 + 2/49 + 2/343 + ...
    now subtract 1 and use standard geometric sum to find
    (36s - 49)/49 = 2/7 (1+ 1/7 + 1/49 +...) = 2/7 x 7/6 = 1/3
    36s - 49 = 49/3
    36s = 49 x 4/3
    s = 49/27

  • @RashmiRay-c1y
    @RashmiRay-c1y 19 годин тому

    The sum is d/dr r d/dr [1/(1-r) ] = (1+r)/(1-r)^3 = 49/27.

  • @chathurangasameera6722
    @chathurangasameera6722 День тому

    I have an nother idea we get the fair formula of sequence ur then ur=((1+r)^2)/7^r i allready foget the first term is 1 okay then my ur is like without 1 okay my target is sigma r goes to 1 to infinity ur + 1. This is the sum of the sequence.okay then after i suppose ur = f(r)-f(r+1)
    Then f(r)=(Ar^2+Br+C)/7^r
    And finally you can substitute f(r) and f(r+1) and you can get the values of A,B,C .
    A=7/6 B=49/18 C=49/27
    Then after we can get sum of ur
    Okay
    r=1 u1 = f1-f2
    r=2 u2 = f2 - f3 furtherly
    r=n-1 un-1 =f(n-1)-f(n)
    r=n un = f(n) - f (n+1)
    Okay adding all this we can get sigma r running to 1 to n ur = f1-f(n+1)
    Okay finally we get the limits of n goes to infinity f1-f(n+1) value
    Easily to calculate its value is 22/27
    Finally sum is given 1+22/27=49/27.

  • @Evil_Jyan
    @Evil_Jyan 22 години тому

    16/91

    • @doctorb9264
      @doctorb9264 20 годин тому

      The first term is already 1.

    • @Evil_Jyan
      @Evil_Jyan 12 годин тому

      @doctorb9264 I meant 343

  • @giuseppemalaguti435
    @giuseppemalaguti435 23 години тому

    S=Σk^2/7^(k-1)..k=1,2,3...=7Σk^2(1/7)^k=7(1/7)(1+1/7)/(1-1/7)^3=7(8/49)/(216/343)=49/27

  • @scottleung9587
    @scottleung9587 День тому

    Nice!

  • @Don-Ensley
    @Don-Ensley День тому +1

    problem
    Can you sum
    1 + 4 / 7 + 9 / 49 + ...
    Let the nth term be Sₙ.
    Examination of the pattern reveals Sₙ.
    Sₙ = ( n + 1 )² / ( 7 ⁿ )
    , with n starting at 0. The ratio test for convergence is used.
    lim (Sₙ₊₁/Sₙ)=(1/7)[(n+ 2)²]/[(n+1)²]
    n→∞ = 1/7
    < 1
    This series converges absolutely.
    Let the common ratio be r.
    r = 1 / 7
    Sₙ = ( n + 1 )² r ⁿ
    Use sigma notation to denote the sum S.
    ͚
    S = Σ ( n + 1 )² r ⁿ
    ⁿ⁼⁰
    This is best tackled by an expansion of Sₙ.
    Sₙ = ( n + 1 )² r ⁿ
    Sₙ = (n² + 2 n + 1)r ⁿ
    Split the series up into three pieces.
    ͚ ͚ ͚
    S = Σ n² r ⁿ + 2 Σ n r ⁿ + Σ r ⁿ
    ⁿ⁼⁰ ⁿ⁼⁰ ⁿ⁼⁰
    Let P₁, P₂, P₃ represent the n², n, and unity series terms.
    Use the known sum of a geometric series formula as the given.
    ͚
    P₃ = Σ r ⁿ = 1 / ( 1 - r )
    ⁿ⁼⁰
    = 7 / 6
    Take the derivatives on each side with respect to r.
    ͚
    Σ n r ⁿ / r = 1 / ( 1 - r )²
    ⁿ⁼⁰
    Multiply by r to find P₂.
    ͚
    P₂ = Σ n r ⁿ = r / ( 1 - r )²
    ⁿ⁼⁰
    = 7 / 36
    ͚
    Σ n r ⁿ = r / ( 1 - r )²
    ⁿ⁼⁰
    Take the derivatives again on each side with respect to r.
    ͚
    Σ n² r ⁿ / r = d[ r / (1 - r)² ]/dr
    ⁿ⁼⁰ = (1 + r) / [(1 - r)³ ]
    Multiply by r to find P₁.
    ͚
    P₁ = Σ n² r ⁿ = ( r + r² ) / [ ( 1 - r )³ ]
    ⁿ⁼⁰ = 56 / 216
    S = P₁ + 2 P₂ + P₃
    = (56 / 216) + (84/ 216) + (252 / 216)
    = 392 / 216
    = 49 / 27
    answer
    49 / 27

  • @yurenchu
    @yurenchu День тому +2

    _Answer_ : 49/27
    _Calculation_ :
    Sum
    S = 1 + 4/7 + 9/49 + ... + k²/7^(k-1) + ...
    Let f(x) = 1 + 4x + 9x² + ...
    Then S = f(1/7)
    and
    ∫ f(t) dt , from t=0 to t=x
    = x + 2x² + 3x³ + ...
    = x*(1 + 2x + 3x² + ... )
    = x*g(x)
    where
    g(x) = (1 + 2x + 3x² + ... ) =
    = d/dx (x + x² + x³ + ...)
    = d/dx (x/(1-x))
    = ((1-x) + x)/(1-x)²
    = 1/(1-x)²
    ∫ f(t) dt , from t=0 to t=x
    = x*g(x)
    = x*(1/(1-x)²)
    = x/(1-x)²
    f(x) = d/dx ( x/(1-x)² )
    = [(1-x)² + x*2(1-x)]/(1-x)⁴ =
    = [(1-x) + 2x]/(1-x)³
    = [1 + x]/(1-x)³
    S = f(1/7) =
    = [1 + 1/7]/(1 - 1/7)³
    = [8/7]/(6/7)³
    = [8/7]/(6³/7³)
    = [8*7²]/(6³)
    = [7²]/(3³)
    = 49/27