What are vector spaces used for?

Поділитися
Вставка
  • Опубліковано 14 січ 2025

КОМЕНТАРІ • 17

  • @massimopescatori6514
    @massimopescatori6514 2 дні тому

    Dott.ssa Lei è veramente BRAVISSIMA ! è un piacere ascoltarla... precisa, pacata, chiarissima ... fa veramente appassionare alla matematica .. complimenti davvero . E continui sempre così, introducendo gradualmente argomenti più complessi .

  • @godhell8039
    @godhell8039 7 днів тому +2

    🙌In attesa del prossimo video…e grazie per questo! Buon anno🥳

  • @stevendestrange7422
    @stevendestrange7422 5 днів тому

    Bravissima dottoressa è riuscita a descrivere un argomento complesso in modo efficace, chiaro e piacevole da seguire!!!...Si vede che ha proprio la passione per la matematica!!! 😊😊😊

  • @armanavagyan1876
    @armanavagyan1876 7 днів тому

    SEI UN GENIO DELLA MATEMATICAE TI VOGLIO BENE❤

  • @sinusiridum551
    @sinusiridum551 7 днів тому

    Brava Prof.! Continui con le sue lezioni : come sempre chiara,tranquila,esaustiva.Accennera` in futuro anche agli spazi di Hilbert? Ultima questione: sarebbe interessante un video che accenni , anche solo superficialmente,al perche` non esistono soluzioni per radicali ,di equazioni polinomiali di grado superiore al quarto : e' proprio necessario studiarsi la teoria di Galois ( che non ho mai voluto affrontare..) per comprenderlo ?Grazie ! E buon Anno !

    • @matematicatranquilla
      @matematicatranquilla  6 днів тому +1

      @@sinusiridum551 Grazie! Per gli spazi di Hilbert ci vorrà sicuramente ancora un po' di tempo prima che esca un video al riguardo, ma per le equazioni invece sicuramente molto meno!

  • @armanavagyan1876
    @armanavagyan1876 7 днів тому +1

    CHE VOCE☺ CARINISSIMA

  • @ioscekbesnoscek
    @ioscekbesnoscek 7 днів тому

    Bravissima complimenti 👍👍👍

  • @magisterpn
    @magisterpn 7 днів тому

    Qui non si parla di che cosa gli elementi dei vari spazi hanno in comune, ovvero la possibilità di essere sommati e moltiplicati per un numero, ma immagino che questo sarà oggetto delle puntate successive. Però lancio uno spunto che mi viene in mente: un video sui concetti astratti di operazione e/o relazione.

  • @cis961
    @cis961 7 днів тому

    Grazie Prof

  • @armanavagyan1876
    @armanavagyan1876 7 днів тому +1

    R^2 non è uno sotospazio vettoriale di R^3

    • @matematicatranquilla
      @matematicatranquilla  7 днів тому +1

      @@armanavagyan1876 Sì, hai ragione, forse non si è capito bene dal video, ma intendevo che R, R^2 e R^3 sono tutti spazi vettoriali e quindi si comportano in modo simile nel senso che le operazioni di cui li dotiamo si comportano allo stesso modo