Quel nombre additionné à son inverse donne 2,05 ?

Поділитися
Вставка
  • Опубліковано 5 вер 2022
  • 🎯 Muscle ton cerveau en faisant de ton quotidien un exercice de maths que tu sauras résoudre 💪 : hedacademy.fr
    Nouvelle question de 1960 de classe de 3ème.
    Trouver un nombre, qui, additionné à son inverse donne 20,05.
    Une question courte mais qui nécessite beaucoup de connaissances et d'aisance, en calcul mental notamment, si on veut en venir à bout sans calculatrice.

КОМЕНТАРІ • 360

  • @banal9997
    @banal9997 Рік тому +59

    je découvre cette chaine et c'est très sympa, je trouve qu'il aurait été intéressant en plus de remarquer que 0,8 est l'inverse de 1,25 et que les 2 solutions sont liées

  • @camembertdalembert6323
    @camembertdalembert6323 Рік тому +64

    la méthode accessible en 3ème, et qui utilise les outils simples de 3ème (addition de fraction et décomposition en produits de facteurs) :
    soit a/b ce nombre avec a et b entiers.
    on alors a/b +b/a = 205/100
    donc en mettant au même dénominateur (a²+b²)/ab = 41/20
    donc il est possible que a²+b²=41 et ab = 20
    cherchons les couples d'entiers a et b dont le produit est 20 et calculons a²+b² à chaque fois :
    - si a=1 et b=20, alors a²+b²=401, ne convient pas.
    - si a=2 et b=10 alors a²+b²=104 ne convient pas.
    - si a=4 et b=5 alors a²+b²=41 convient.
    on a donc 4/5 comme solution. Par symétrie on aura aussi 5/4

    • @SandburgNounouRs
      @SandburgNounouRs Рік тому

      habile

    • @TheHakanSener
      @TheHakanSener Рік тому +1

      Je trouve ce raisonnement beaucoup plus élégant ^^

    • @florent6382
      @florent6382 Рік тому

      Comme quoi il faut toujours regarder un problème avec les outils dispo dans le programme.
      C'est comme la mouche qui fait des A/R entre 2 TGV qui vont l'un vers l'autre. Suivant la classe qui reçoit le problème la résolution est très différente :)

    • @jeanmanu
      @jeanmanu Рік тому +1

      génial ! Même la solution "lycée" on l'applique mais on ne la comprend pas (ou plus !?) alors que là c'est limpide !

    • @tatasimone
      @tatasimone Рік тому

      les fondamentaux

  • @pat7594
    @pat7594 Рік тому +97

    Pas d'équation du second degré en troisième dans les années 60. L'attendu était plutôt :
    a/b + b/a = 41/20 ----> (a² + b²)/ab 41/20 Il suffit de résoudre : a² + b² = 41 et ab = 20
    On peut alors faire la méthode proposée par Neil Wang ou bien utiliser les identités remarquables :
    1) a² + b² + 2ab = 41 + 2x20 = 81, c'est à dire (a + b)² = 81 ----> a + b = 9
    2) a² + b² - 2ab = 41 - 2x20 = 1, c'est à dire (a - b)² = 1 ----> a - b = 1
    3) On résout le système et on trouve a = 5 et b = 4
    La question étant : "Trouver un nombre qui...", il suffisait d'une seule réponse : 5/4
    Avec un bonus pour ceux qui remarquaient que les équations étant symétriques en a et b, on pouvait aussi proposer 4/5.
    NB : Le manque de rigueur à la conclusion de la première ligne pouvait être abordé au moment du corrigé pour remarquer que cela ne changeait rien

    • @Taletad
      @Taletad Рік тому +2

      C’est la solution la plus simple je trouve

    • @theguillaume73
      @theguillaume73 Рік тому +1

      Esthétique !

    • @remifalasido2903
      @remifalasido2903 Рік тому +2

      Très intéressante remarque initiale, et très instructive solution. Pas facile tout de même, ce qui montre aussi la qualité des élèves de l'époque, et l'effondrement des savoirs depuis lors. :)

    • @PatrickObiang
      @PatrickObiang Рік тому

      Bien vu! BRAVO!

    • @loicdearaujo8557
      @loicdearaujo8557 Рік тому +2

      Exact. De plus, l'addition étant associative, on peut déduire de l'énoncé que les deux solutions sont des inverses, en conséquence, n'en chercher qu'une.

  • @gerardmasson7654
    @gerardmasson7654 Рік тому +25

    Remarque: si a convient, son inverse convient nécessairement(définition même de l'inverse).' 1,25 X 0.8 = 1) C'est un moyen efficace de vérification(obligatoire à mon avis pour toute équation) ou de trouver le deuxième nombre dans ce cas précis quand on sait que 8 X 125 = 1000

  • @aurelienfleuryinfosvideos
    @aurelienfleuryinfosvideos Рік тому +17

    Pour info. L'inverse est de 0,8 est justement 1,25 et donc L'inverse de 1,25 est 0,8

  • @arikaf1066
    @arikaf1066 Рік тому +72

    Marrant, je connais pas mes carrés au delà de 20 mais j’ai fait 0,2025 = 2025/10000 et j’ai simplifié la fraction à coup de divisions par 5 jusqu’à tomber sur 81/400 pour reconnaitre 9/20 au carré. Du coup j’avais racine de delta = 9/20. Mais j’ai fait maths sup spé il y a 10 ans, gros respect pour nos collégiens de l’époque.

    • @sheytacbaretts8621
      @sheytacbaretts8621 Рік тому +5

      Pour simplifier une fraction il faut décomposer le numérateur et le dénominateur en produit de facteurs premiers. C’est la méthode standard.

    • @alestane2
      @alestane2 Рік тому

      @@sheytacbaretts8621 Quand on reconnait des facteurs communs au dénominateur et au numérateur, on commence par les simplifier avant de se poser plus de questions, c'est aussi une méthode standard.

    • @clems8088
      @clems8088 Рік тому

      @@alestane2 d'ailleurs je pense que c'était plus cette démarche qui était recherchée (décomposition en facteurs premiers puis propriétés des puissances) que l'astuce sur les puissances de 5 et la connaissance de 45². Certes plus chronophage, mais moins spécifique

    • @thaflimac1861
      @thaflimac1861 Рік тому

      @@clems8088 Moi j'aurais décomposé 2,05 en une somme pour utiliser une identité remarquable, ça marche systématiquement et c'est simple, donc ça me paraît être la méthode attendue, plutôt que des astuces ou une méthode bien bourrine.

  • @soljin1010
    @soljin1010 Рік тому +28

    2.05 = 205/100 = 41/20
    a/b + b/a = (a²+b²)/ab
    Donc, a²+b²=41 et ab=20
    20, c'est soit 4*5, soit 2*10. Donc, on a soit ab=4*5, soit ab=2*10, avec a et b entiers par définition.
    On essaie les deux couples et on trouve que 4 et 5 sont solutions. Il y a deux nombres qui répondent à la question: 4/5 et 5/4.

  • @remifalasido2903
    @remifalasido2903 Рік тому +4

    Beau problème que ke n'arrivais à résoudre que par une équation du second degré, et j'étais étonné que des élèves de 3e, en 1960, avaient déjà cela au programme. Mais un de vos suiveurs a indiqué que ça n'étais pas le cas, et que la résolution passait pas un autre chemin. Il n'en demeure pas moins que vous êtes très pédagogue, et c'est un vrai plaisir de revoir tout cela avec vous. Cordialement

  • @Db06200
    @Db06200 Рік тому +5

    L'un des plus beaux et complet exercice de math ! Joli niveau qu'il faut quand même !

  • @tommycooper8207
    @tommycooper8207 Рік тому +6

    Mec t'étais où quand j'étais au lycée?! Ce genre de vidéo éducative bien faite ça peut vraiment changer comment voir les maths, je me retrouve à bien aimer cette matière 7 ans plus tard :)

  • @jawazzz2518
    @jawazzz2518 Рік тому +1

    Supers vidéos, j'en croise parfois et ça me rappelle plein de souvenirs ^^ Merci !

  • @KRISPHIL68
    @KRISPHIL68 Рік тому +2

    Nouvel abonné à cette chaine. Je constate que le niveau actuel des élèves est très éloigné de celui obtenu jadis par les pioupious. Je suis né en 1968. En visionnant pas mal de vidéo aujourd'hui sur votre chaine j'ai pris plaisir à redécouvrir "Delta", les diverses astuces pour les puissances de puissance, bref je me régale et je vais redécouvrir tout ça avec vous. Génial votre enseignement.

  • @Etienne_Prudence
    @Etienne_Prudence Рік тому +4

    N'ayant pas voulu faire de résolution d'équation du 2ème degré de tête, j'ai trouvé deux méthode alternative. Je les trouve moins rigoureuses mais elles évitent les carrées de nombre à virgule.
    Dans les deux cas on recherche une solution de la forme p/q où p et q sont deux entiers strictement positifs et premiers entre eux (la fraction en irréductible). Le problème s'écrit donc : p/q + q/p = 2,05. On note donc que p et q sont interchangeables.
    Première (méthode musclée) :
    Il y a très peu de nombres entiers dont l'inverse donne un résultat fini deux zéros après la virgule. L'ensemble de ses nombres sont les diviseurs de 100, E={2; 4; 5; 10; 20; 25} (on évacue 1 et 100). Parmi ces nombres on en recherche un qui se termine par 0,05. On réduit le champs des possibles à {4 ; 20}. On a respectivement, 1/4 = 0,25 et 1/20=0,05. Donc 4 ou 20 est un des nombres qu'on cherche (p ou q). On recherche maintenant dans l'ensemble E les nombres premiers avec 4 ou 20.
    On remarque que 20 n'est premier avec aucun, on l'élimine. Il reste 4 qui est premier avec 5 et 25. On teste : 5/4=1,25 et 25/4=6,25>2,05. (4; 5) est donc le seul couple viable. Et on obtient effectivement 5/4 + 4/5 = 2,05.
    Le problème de cette démonstration c'est qu'on exclue une solution irrationnelle...
    Deuxième (esthétique) :
    On essaie de réécrire 2,05 sous forme de fraction irréductible et de procéder par identification. 1/20 = 0,05 donc on arrive facilement à 2,05 = 41/20. D'un autre côté on a p/q + q/p = (p² + q²)/(pq) quand on met tout au même dénominateur.
    Quand on recolle les morceaux : (p² + q²)/(pq) = 41/20.
    p et q étant premier entre eux (p² + q²)/pq est irréductible. Ainsi par identification on obtient p²+q² = 41 et pq = 20.
    On a deux couples de solutions : (2; 10) et (4 ;5) un simple test élimine le premier couple. Il ne reste que (4; 5), qui est la solution.
    Le problème de ces démonstrations c'est qu'on ne peut trouver des solutions que si elles sont rationnelles. Cependant, je trouve que manipuler des fractions est très agréable.

  • @marclamidet9386
    @marclamidet9386 Рік тому +1

    Ça prouve une chose...le niveau était très élevé...
    J'avais la démarche, mais difficile d'avoir les réflexes et prérequis permettant de le faire de tête...
    J'aurais peut-être eu les points pour la logique, pas pour le résultat !
    Bravo pour cette chaîne et son animateur 👍👍👍.
    Je n'ai jamais eu un tel prof.
    Grande classe...
    PS: j'étais en 3e en 1981..

  • @alainreseau6777
    @alainreseau6777 Рік тому +3

    Bien vu la méthode d'élever les multiples de 5 au carré. On peut aussi utiliser les identités remarquables pour décomposer 2.05 en 2+1/20, ce qui se passe plutot bien ensuite

  • @14Pleki14
    @14Pleki14 Рік тому +16

    Je dois vous avouer qu'au moment de regarder vos premières vidéos, j'ai eu un peu de mal sur la forme et la présentation, mais au final, vous avez une excellente approche, je trouve. C'est très pédagogue, et je me surprends maintenant à regarder vos vidéos pour le plaisir. Objectif atteint, bravo 😉

  • @stephaneroger
    @stephaneroger Рік тому +49

    J'ai tout multiplié par 100 pour éviter les virgules, donc 100x + 100/x=205. Et là, on oublie la calculatrice ;)
    On se retrouve au final, après avoir simplifié, à gérer l'équation 20x²-41x+20=0 et on trouve bien 5/4 et 4/5

    • @yugapillon1343
      @yugapillon1343 Рік тому +2

      J'ai pas pensé atout multiplier par 100....ça m'aurait fait économiser du cerveau x)
      (Mais comme j'ai trouvé, je vais pas me plaindre ;))

    • @lewisanesa1223
      @lewisanesa1223 Рік тому +1

      J'avais pensé à tout multiplier par x, mais pas par 100. Très belle initiative!

  • @youssefboulahdid7619
    @youssefboulahdid7619 Рік тому

    Magnifique, vraiment un chouette exercice

  • @mimikiki1805
    @mimikiki1805 Рік тому +20

    Bonjour Mr hedayati c'est seddik et j espere que vous allez bien je suis maintenant en premiere et je vous regarde toujour quand j ai certaines difficultes vous expliquer trop bien je vous souhaite bon courage pour votre chaine youtube et pour la rentree .signee : un ancien eleve qui etait avec vous en 4eme

    • @araubaze
      @araubaze Рік тому +4

      On évite de donner les noms de famille!
      Comme pour les maths il existe aussi des chaînes pour le français😉😉

    • @evloude8926
      @evloude8926 Рік тому

      ​@@araubaze c'est peut-être plus facile quand on s'appelle Sébastien que si on se prénomme Seddik 😉

  • @keaulaim4297
    @keaulaim4297 Рік тому +10

    Super vidéo encore une fois !! Je trouve cet exercice effectivement très puissant, il permet de voir pleins de propriétés ( que pour une équation réduite à sa forme x²-sx+p, s et p sont la somme et le produit des racines, que l'on ne peut résoudre le problème pour n'importe quelle somme que si elle est supérieure en valeur abs à 2, ...). Je trouve juste dommage que tu n'ai pas fait remarqué le côté symétrique du problème qui rend logique le fait qu'il y ai deux racines (car l'une est l'inverse de l'autre, et vice versa).
    En tout cas continue comme ça, tes vidéos sont au top !!!

    • @hedacademy
      @hedacademy  Рік тому +1

      C’est vrai.. en plus je viens de tourner une vidéo ou j’insiste sur les rôles symétriques de x et y..
      Merci pour ton retour 😊😊

  • @clemguitarechal
    @clemguitarechal Рік тому

    C'etait kiffant comme explication. Merci beaucoup

  • @Aquallord
    @Aquallord Рік тому

    Hello ! Juste un petit commentaire pour dire que je suis tombé un peu par hasard sur cette chaine, mais ca fait du bien de se "replonger" sur ce genre d'exercices. Je me suis étonné a me rappeler comment calculer un discriminant 7 ans apres le lycee (je reste proche des maths étant dev, ca doit aider). Bref gros kiff, meme en ayant trouvé la solution t'entendre l'expliquer et donner des petites astuces en plus est un véritable régal. Bisous !

    • @hedacademy
      @hedacademy  Рік тому +2

      Merci pour ce retour, il fait très plaisir et motive 😁

  • @algsecure
    @algsecure Рік тому +3

    C’est génial 😀
    Si tous les profs qu’on avait étaient super comme ce monsieur, on serait tous ou la plupart mathématiciens. Il explique tellement bien qu’on ne peut ne pas comprendre

    • @jsmacur36
      @jsmacur36 Рік тому

      Complètement d'accord avec vous. On n'a qu'une envie : s'y remettre

  • @herverousseau8287
    @herverousseau8287 Рік тому

    Puissant !
    Merci

  • @i.m.m5846
    @i.m.m5846 Рік тому

    Mais c'est passionnant ! Merci +++

  • @saidaahmedchaouch81
    @saidaahmedchaouch81 Рік тому

    👏 très bonne explication

  • @Ixxxar
    @Ixxxar Рік тому +2

    Delta est un raccourci de lycéen auquel ne devait pas avoir accès les élèves de 3eme.
    Cependant, tout élève connaissant ses identités remarquables peut résoudre une équation du second degré à l'aide de factorisations astucieuses (la méthode est encore vu par certains prof de seconde)
    Sans calculatrice, je transformerai la 2.05 en 41/20, plus facile de faire des racines avec
    x² - 41/20 x +1 = 0
    x² - 2 * 41/40 * x +1 = 0
    x² - 2 * 41/40 * x + (41/40)² - (41/40)² +1 = 0
    (x - 41/40)² - 1681/1600 + 1600/1600 = 0
    (x - 41/40)² - 81/1600 = 0
    (x - 41/40)² - (9/40)² = 0
    (x - 41/40 - 9/40) * (x - 41/40 + 9/40) =0
    (x - 50/40) * (x - 32/40) =0
    (x - 5/4) * (x - 4/5) =0
    -> Equation de produit dont les solutions sont 5/4 et 4/5
    Pas sur que se soit non plus la méthode attendue dans les années 60, mais au moins ça marche avec des connaissance de 3eme.

    • @rikybanlieue4810
      @rikybanlieue4810 25 днів тому +1

      à mon époque, en 1975 on faisait déjà des équations du second degrés et on passait par Delta... mais bon, c'est l"évolution, maintenant on est Balaise en TikTok et instagram... alors qu'à l'époque, on voyait pas ça en 3ème, effectivement

  • @quitteriedegermay3285
    @quitteriedegermay3285 Рік тому

    Good job ,i like your exercices and i Will progress in this subject
    Thank you very much

  • @jocelynouillon2777
    @jocelynouillon2777 Рік тому

    Excellente pédagogie bravo !

  • @jef8216
    @jef8216 Рік тому

    Bonjour vous êtes génial et Super Sympa merci et cordiales salutations

  • @bigorneauboiteux
    @bigorneauboiteux Рік тому +4

    En transformant 2,05 en fraction 205/100, qui après simplification donne 41/20, on obtient un gentil delta qui vaut 81.
    J'espère que nous pourrons profiter de vos vidéos encore très longtemps. Merci.

  • @user-jg3mo4dh7y
    @user-jg3mo4dh7y Місяць тому

    Oui ça m’a beaucoup plu ! Merci !

  • @arnaudoundjian827
    @arnaudoundjian827 Рік тому

    Merci pour tout mon grand.

  • @joarnaud761
    @joarnaud761 Рік тому

    Trop fort
    Merci

  • @VieuxStan
    @VieuxStan Рік тому +3

    On peut rendre l'écriture du Δ un peu plus élégante en utilisant une identité remarquable (et sans calculatrice):
    Δ = 2.05² - 4
    Δ = (2 + 1/20)² - 4
    Δ = 1/5 + 1/400
    Δ = (9/20)²

  • @meedolas5309
    @meedolas5309 Рік тому

    Hey ! Merci pour la vidéo qui est très instructive et ce problème très bien amené, pour trouver de tête racine de delta il est assez simple même sans connaître le carré par coeur d'y arriver par tâtonnement, 0,5² = 0.25, 0,4² = 0,16 et delta se finit par 25 donc la dernière décimale de sa racine est forcément un 5 ! Il est donc assez instinctif de tester 0,45 ! Merci encore pour le partage, cela fait réaliser la chute de niveau globale en mathématiques à travers le temps et des vidéos comme celles-ci aident à progresser, et surtout à s'intéresser aux maths en y prenant du plaisir ! Votre pédagogie est au top ! Bonne continuation !

  • @michelprely8299
    @michelprely8299 Рік тому +6

    J'ai passé le BEPC en 1962, et pas question d'équations du second degré à cette époque avant la 1ère (sauf à retrouver les identités remarquables). Sinon le problème est amusant et m'a fait revenir quelques années en arrière.

    • @yayatheobroma929
      @yayatheobroma929 Рік тому +1

      @Michel Prely, la solution donnée par Camembert d’Alembert il y a un mois est bien du niveau 3e (même aujourd’hui) même si elle requiert un peu d’astuce: au lieu de chercher à résoudre x + 1/x = 2,05, se pencher sur a/b + b/a = 2,05 = 205/100 = 41/20 et trouver deux nombres a et b (entiers non nuls évidemment) qui vérifient à la fois ab = 20 et a^2 + b^2 = 41. On trouvera (4;5) et (5;4), et on pourra proposer comme réponse 0,8 ou 1,25 (l’énoncé n’en demande qu’une).
      Ceci dit, j’etais moi aussi partie sur l’equation du second degré et sa lourde et inélégante résolution, tout en me disant que ce n’était pas utilisable en 3e.

  • @melantipam2053
    @melantipam2053 Рік тому

    Les élèves de 3ème savaient extraire les racines carrées à la main (la méthode qui ressemble à une division) en 1960 (programme de 1958) et c’était au programme du BEPC. Ce n’était par contre pas le cas de la résolution des équations du second degré à une inconnue qui n’était enseignée qu‘en seconde. Les élèves de troisième ne pouvaient donc pas calculer le discriminant. Ceci dit, ils avaient à leur disposition la table de carrés jusqu’à 1000. Son utilisation était peut-être attendue dans cet exercice. Il faudrait voir le livre d’où il est tiré.
    Autrement, vidéo formidable comme d’habitude.

  • @Amine59Dk
    @Amine59Dk Рік тому

    Très élégant !

  • @deamond.
    @deamond. Рік тому +2

    First❤️ merci pour tout ce que tu fais, tu fais un boulot de qualité continue comme ça!✅❤️

  • @Nellybui
    @Nellybui Рік тому

    Pour calculer delta, j'ai transformé le 2.05 en fraction et le calcul devient bien plus simple. Il y a juste un calcul un tout petit peu plus compliqué ( 41² ) mais gentil quand même, et delta se trouve facilement et est un carré parfait. :
    x + 1/x = 2.05
    x² + 1 = 2.05x
    x² - 2.05x + 1 = 0
    2.05 = 2 + 0.05 = 2 + 1/20 = 40/20 + 1/20 = 41/20
    x² - 41x/20 + 1 = 0
    20x² - 41x + 20 = 0
    a = 20
    b = -41
    c = 20
    △ = 1681 - 1600 = 81 = 9²
    x1 = (41 - 9)/40 = 32/40 = 4/5 = 0.8
    x2 = (41 + 9)/40 = 50/40 = 5/4 = 1.25

  • @g-a-b-r-i-e-l
    @g-a-b-r-i-e-l Рік тому

    Bonjour et merci.
    Mr Hexa a l'air de parler de sujet qui doivent déjà être acquis pour comprendre cette vidéo (polynôme, delta, etc)
    Il y a t'il sur sa chaine ce qu'il faut pour acquérir les prérequis pour comprendre cette vidéo car je ne trouve pas, merci !

  • @herve5784
    @herve5784 Рік тому +1

    Rien compris, mais c'est toujours un plaisir de te voir.

  • @programaths
    @programaths Рік тому

    Il ne faut surtout pas oublier que dans les années '50/'60 voire même jusqu'aux années '90, le fondamental préparait à la vie active et le secondaire était encore facultatif...À 13 ans, des gamin travaillaient ou allaient se former...
    Donc on voulait des gamins de 12 ans qui savaient réfléchir et utiliser quelques outils, plutôt que d'être exposés à pleins d'outils et d'apprendre à apprendre car ils ont encore 6 ans d'école. Puis avec le temps, le rénové est aussi passé en mode "apprendre à apprendre" puisque la suite logique, c' est l'unif ou la haute école (études supérieures professionnalisante).
    Donc on compare un cursus de 6 ans avec un cursus entre 12 et 18 ans (voir plus pour certaines spécialités).
    Un exemple "dingue", c'est par exemple de devoir apprendre les propriétés des logarithmes à 11 ans pour utiliser la règles et des tomes entiers de tables de logarithmes.
    C'est con, mais l'école évolue aussi ^^
    Enfin, décontextualisés, certains problèmes deviennent bien gore.

  • @aleonard731
    @aleonard731 Рік тому

    excellente démonstration de la baisse du niveau. Donc un élève brillant de première aujourd'hui a le niveau d'un élève de troisième de 1960 !

  • @Gabs2345
    @Gabs2345 Рік тому +1

    Pas mal :) quand j'ai compris qu'il y aurait besoin de delta j'ai immédiatement multiplié tous les termes par 100, et je me suis ramené à ça :
    100x²-205x+100=0
    Ça a rendu le calcul du discriminant beaucoup plus facile ; j'ai trouvé delta = 2025 = 25*81 = 5²*9² = 45²
    Ensuite, trouver les solutions est une formalité :)

  • @maliklalami6697
    @maliklalami6697 Рік тому

    "X1 est adorable", ça résume bien ce que l'élève se dit quand il finit ce calcul. Merci encore pour cette belle démonstration.

  • @WacZec
    @WacZec Рік тому

    C'est beau !

  • @sergeb17
    @sergeb17 Рік тому

    merci pour tes videos! j avais a peu pres le meme style d exo en 3 eme ds les annees 80

  • @sergenjamkepo6467
    @sergenjamkepo6467 Рік тому

    Vieille méthode de mes années collège (début des années 70 👴)
    Si on ne connait pas la formule de ∆, et que on ne veut pas faire d'élévations au carré, l'équation se résoud en remarquant que (x^2) - 2,05x est le début du carré de (x - 1,025).
    On écrit l'équation sous la forme ((x - 1,025)^2) - [(((1,025)^2) ) - 1] = 0
    (Ce qui revient à recréer le ∆ sans le dire ! )
    Le terme entre crochets étant positif, on a alors la différence de deux carrés.
    Le terme entre crochets s'écrit (1,025 + 1)(1,025 - 1) ou 2,025*0,025 ou 0,2025/4 ou (0,45/2)^2
    (😅 Il faut quand même savoir que 0,2025 est le carré de 0,45, mais dans un problème "bien" construit, une question préliminaire peut être de calculer (45^2) ou même on peut donner cette donnée).
    On a alors (x - 1,025 + 0,225)(x - 1,025 - 0,225) = (x - 0,8)(x - 1,25) = 0

  • @jeffh.8251
    @jeffh.8251 Рік тому +2

    ben ça.... ils étaient costauds les mômes en 1960 !!! à l'aise jusqu'à Delta mais là erreur de calcul ....(sans calculatrice bien sûr) du coup j'ai patiné. Mais je voyais bien le chemin jusqu'au bout. Merci Merci pour ta bonne humeur et de continuer à nous éduquer

  • @crespybenoit8313
    @crespybenoit8313 Рік тому +2

    J'ai transforme 2.05 en une fraction simplifiee a 41/20, ce qui simplifie tous les calculs par la suite puisque Delta = 81/400 et donc racine de delta 9/20 (0.45). Ma terminale C et classes prepas sont bien loins, mais je n'ai pas souvenir d'exos aussi durs en 3eme :-)
    Quoiqu'il en soit, merci @hedacademy pour ces contenus tellement amusants et pedagogiques

    • @emmanuelc.8831
      @emmanuelc.8831 Рік тому

      Vous étiez en 3e en 1960 ?

    • @araubaze
      @araubaze Рік тому

      @@emmanuelc.8831 Et vous?

    • @emmanuelc.8831
      @emmanuelc.8831 Рік тому

      @@araubaze moi j'étais dans les boules de mon ...

  • @RegisMichelLeclerc
    @RegisMichelLeclerc 15 днів тому

    Au début des années 80, on apprenait toujours à sortir des racines carrées en CM2... et on travaillait beaucoup plus avec les fractions: 2,05, c'est 205/100, même si c'est long à écrire, c'est fail-safe.
    Ça ne m'étonne pas que les "trinômes du second degré" soient connus dès la troisième en 1960. Je suis certain que le manuel de maths expliquait la méthode et que l'exercice n'était qu'une application.

  • @gyuri2918
    @gyuri2918 Рік тому +5

    Ce qui m'amuse le plus, c'est que chaque nombre est l'inverse de l'autre, ce qui fait que x² est automatique sans même le calculer. Une fois que tu as x1, tu as x2. Que tu fasses l'opération "inverse" ou que tu fasses le calcul de l'énoncé, tu tombes sur le bon résultat.

  • @hectthorno584
    @hectthorno584 Рік тому +1

    Je me suis débarrassé du 2,05 en le transformant en 41/20 puis en multipliant tous les termes par 20 afin de me débarrasser du dénominateur. Après le plus dur était de calculer -41^2 pour trouver delta

  • @lionelrossignol4131
    @lionelrossignol4131 Рік тому

    Bonjour mon ami. J'adore ce que tu fais pour la vulgarisation des maths. Sur ce sujet, j'aurais aimé que tu nous expliques comment l'élève de 1960 calculait le carré de 2.05 ou la racine de 0.2025. Lui apprenait-on en cours comment trouver le carré d'un nombre finissant par 5 ou les carrés remarquables ? Pour ma part, je ne suis pas si jeune (55 ans) mais j'ai quand même pris ma calculette peut-être par flemme ou manque de temps pour me faciliter la tâche. Le reste étant ensuite assez simple.
    Bravo pour tes émissions. j'espère que tu feras de nombreux émules des mathématiques.

    • @alestane2
      @alestane2 Рік тому

      Je pense qu'il faisait comme moi (qui étais un élève des années 70) et transformait 2.05 en 41/20 et faisait les calculs en fractions.

    • @luxraider5384
      @luxraider5384 Рік тому

      En ce qui concerne le carré, il suffit de faire une multiplication simple sur papier non? Et en ce qui concerne la racine je pense qu il essayaient tout simplement de trouver un encadrement de cette racine et basta

  • @Pima546
    @Pima546 Рік тому

    Oh purée ! 🤯

  • @lmz-dev
    @lmz-dev Рік тому +3

    J'en connais des personnes qui ont eu cet exercice en 60 et ...
    ... ils cherchent encore les solutions ;p

  • @julienck3073
    @julienck3073 Рік тому

    J’ai tout mis en fraction au départ, 2,05 étant égal à 2+1/20, pour arriver à l’équation de second degré et 4/5 et 5/4.
    Sympa ces exos du temps du sépia.

  • @camillobruno
    @camillobruno Рік тому +2

    Difficile ou norme de l'époque ?

  • @marc9080
    @marc9080 Рік тому

    Je pige mal mais comme je suis curieux je vais au bout de la vidéo! je pense qu'après 3 vues et l'esprit clair je finirai par piger, merci, je me souviens pourquoi j'ai zappé les Maths très vite et trop tôt malheureusement!

  • @christophemecrin1335
    @christophemecrin1335 8 місяців тому

    le calcul serait plus joli avec des fractions : 2,05 = 41/20. les solutions sont 5/4 et 4/5, dont chacun est l'inverse de l'autre
    merci pour ces petites énigmes, c'est sympa à résoudre

  • @Morty_Sceptique
    @Morty_Sceptique Рік тому +1

    Je serais curieux de voir la tête de nos 3éme d'aujourd'hui si on leur donnait un tel exercice ...

  • @sheytacbaretts8621
    @sheytacbaretts8621 Рік тому

    Sans la calculatrice pour trouver la racine carrée il faut utiliser la décomposition en produit de facteurs premiers surtout quand on sait que dans les exercices on s’arrange pour avoir des « carrés parfaits » (façon de parler ).

  • @tontondlg
    @tontondlg Рік тому

    Mais c'est formidable!!!!
    Griencompri.
    Ce fut beau, cela dit.

  • @dlspark7965
    @dlspark7965 Місяць тому

    Pour trouver la racine carré du delta, j'ai entre autres utilisé la différence de carré :
    2,05 ² - 2 ² = (0,05)(4,05) = (5*5*81)/(100*100) car j'ai divisé 405 par 5 en multipliant 405 par 2 (=810) et en divisant par 10 (=81 on recule la virgule de 1 espace) afin d'avoir un 5 ².
    On voit que delta = (5 ² * 9 ²) / 100 ² = (5*9/100) ².
    Ainsi, racine de delta = 9/20 = 0,45
    😀

  • @monsieurd.6890
    @monsieurd.6890 Рік тому

    Je doute qu'en 1960 ils auraient procédé ainsi car ces exercices étaient des exercices donnés dans les écoles rurales dans lesquelles ce que l'on appelait les mathématiques modernes n'était pas enseigné. J'étais en troisième en 1988-1989 mais j'ai fait ma scolarité dans un petit village où traînaient encore des manuels d'avant la première guerre mondiale (si, si). D'où ma remarque car je peux vous garantir qu'il était hors de question d'y trouver ce type de raisonnement (que l'on appelait les mathématiques modernes).
    Je ne sais pas comment ils résolvaient cela mais c'était vraisemblablement assez simple. Peut-être avec de la force brute. Genre pour que cela donne 2,05 cela veut dire que la valeur et son inverse, vu quelles sont toutes les deux positives, sont forcément inférieures à 2,05 (et supérieures à 0). Et vraisemblablement proche de la moitié de 2.05 puisque l'élève se rend compte qu'avec 1 ça donnerait 2. Il va donc essayer avec 1.1. Ca donne 1.1+0.909...= 2.009 ce qui n'est pas assez. Il va essayer 1.2 ce qui donne 1.2+0.833... = 1.933 ils se rend compte que cela diminue donc il n'est pas parti dand le bon sens. Il essaye alors 0.9 qui de la même façon donne 2.01. Il essaye 0.8 qui donne 2.05. Et voilà. je suis en fait quasiment persuadé que c'est la méthode qui était attendue à l'époque «dans le pire des cas».
    Et dans le meilleur des cas on leur faisait apprendre par cœur un grand nombre d'inverses (car il n'y avait pas de machine à calculer et que le pasteur était partout) et dans ces conditions il aurait été facile de trouver la réponse.
    Dernière hypothèse : on leur donnait une table des inverses (comment on donnait plus tard dans leur scolarité une table des logarithmes par exemple) et il suffisait de trouver la réponse dedans.
    Je fais remarquer que la première méthode est pour cet exercice particulier meilleure que la méthode moderne. Mais que bien entendu avec une valeur bien différente de 2.05 ça devient impossible sans la méthode moderne. Ce n'est d'ailleurs pas pour rien qu'ils ont choisi 2.05...

  • @loranpoupou
    @loranpoupou 7 місяців тому

    Bonjour
    Je vous rappelle cher professeur que dans les années 60 on savait extraire une racine carrée À LA MAIN. Eh oui !!!
    Il pourrait être intéressant de faire une vidéo sur ce sujet.
    Continuez à nous divertir.

  • @pierrel.3937
    @pierrel.3937 Рік тому +1

    "je le connais, c'est un ami!" 🤣🤣

  • @yvesfarbos647
    @yvesfarbos647 Рік тому

    Sympa ce problème ! Un peu compliqué le passage "réduction au même dénominateur"
    Avec x différent de 0 on a : x+1/x=2.05 soit x^2-2.05x+1 =0...

  • @herves7727
    @herves7727 Рік тому

    En écrivant 2.05 sous forme fractionnaire dès le début, ça fait 41/20. Du coup, le delta devient 1681-1600=81
    Racine carrée de delta=racine carrée de 81=9
    Les deux solutions réelles sont 4/5 et 5/4, après simplifications de fractions. Soient 0.8 et 1.25.
    Pour moi, c'est beaucoup plus simple.
    Etrange de trouver des polynômes du second degré en 3e. Autre temps, autre moeurs...

  • @philippegibault6889
    @philippegibault6889 Рік тому

    Pour commencer, car le calcul, c'est comme la musculation, ça ne rend pas intelligent, c'est juste de l'entrainement (dixit mon prof de TD de quantique), j'ai remarqué que 2,05 = 41/20.
    Du coup, l'équation devient x + 1/x = 41/20.
    On met au même dénominateur, on arrive à x^2 + 1 = 41/20x soit l'équation suivante:
    x^2 - 14/20 x +1 =0.
    Soit d le discriminant
    d = (41/20)^2 - 4 = (41/20 -2)(41/20 +2) = ((41 -40)/20)((41 + 20)/20) soit 81/20^2.
    racine(d) = 9/20.
    On a donc deux solutions.
    x1 = (41/20 + 9/20)/2 = 50/40 = 5/4.
    x2 = (41/20 - 9/20)/2 = 32/40 = 4/5.
    On vérifie que x1 et x2 sont inverse l'un de l'autre. Et on a bie xi + 1/xi = 41/20 pour i=1,2.
    Donc S = {5/4, 4/5}. J'en suis à 3min20 de la vidéo.

  • @pureffm
    @pureffm Рік тому

    Moi j'aurais réecrit l'équation: x + 1/x = 2,05 20x² - 41x + 20 = 0. Du coup
    x1 = ( 41 - √((-41)²- 4 x 400)) / 2 x 20 = (41 - √(1681-1600) / 40 = (41 - √81) / 40 = 32 / 40 = 0.8
    x1 = (41 + √((-41)²- 4 x 400)) / 2 x 20 = (41 +√(1681-1600) / 40 = (41 + √81) / 40 = 50 / 40 = 1.25
    En calcul mental ca me semble plus safe, on a vite fait des erreurs de virgules!

  • @stunt02499
    @stunt02499 Рік тому

    Et dire que maintenant les eleves prennent la calculette pour calculer une simple operation..On a oublié d'enseigner toutes ces astuces de calcul rapide qui font fonctionner l'esprit et pas les doigts...tres bonne video jadore😊☺

  • @lambolais
    @lambolais Рік тому

    L’exercice ayant été donné en troisième, on peut chercher des solutions rationnelles. Avec x = p/q, p et q entiers non nuls, le système devient pq = k 20 et p^2 + q^2 = k 41 (2,05 = 41 / 20). On essaye pour k = 1. Les diviseurs 4 et 5 de 20 conviennent. D’où x = 4/5.
    Pas très académique mais c’était peut-être la solution intuitive attendue en 3e…

  • @RaphaelRousseau
    @RaphaelRousseau Рік тому +1

    Traduction de l'énoncé : X+1/X = 2.05
    On multiplie tout par X et on met tous les termes non-nuls à gauche : X²-2.05X+1=0
    Cest un trinôme du 2nd degré.
    DELTA=2.05²-4 = 0.2025
    1ère solution :
    (2.05+sqr(0.2025))/2
    (2.05+0.45)/2
    1.25
    2ème solution :
    (2.05-sqr(0.2025))/2
    (2.05-0.45)/2
    0.8

  • @bricepilard5267
    @bricepilard5267 Рік тому +8

    En fait des le départ on peut trouver 2 solutions.
    Et que ces 2 nombres seront leurs propres inverses.
    Si x est une solution, 1/x est aussi une solution.
    (1/x) + (1/(1/x))= 1/x + x .
    Après avoir trouvé x=0.8, on déduit que 1/0.8 est laussi solution . Et 1/0.8 = 1.25

  • @laika436
    @laika436 Рік тому

    Surtout qu à l époque les collégiens n avaient pas de calculatrice... Bravo à eux 👍

  • @barnabu896
    @barnabu896 Рік тому +1

    Passer par une équation du 2nd degré pour résoudre un problème de 3è de 1960... ça ne plaisantait pas à l'époque !

  • @freezebit
    @freezebit Рік тому

    Super vidéo merci !! Je soulignerai juste que dès l'énoncé on sait que le delta est positif puisqu'on nous demande de trouver UN nombre, sous entendu il en existe plusieurs ;)

  • @kalwyn3196
    @kalwyn3196 Рік тому

    Il était possible de mettre le x+1/x sur le même dénominateur et ainsi se retrouver avec (x²+x)/x, et convertir 2.05 en fraction soit 41/20. De là, un produit en croix était possible. On arrivait aux mêmes résultats, mais en fractions, et en ayant contourné la "difficulté" des virgules

  • @thomasdebeaurepaire5193
    @thomasdebeaurepaire5193 Рік тому +2

    Au passage, la solution est unique, car 0,8 est l'inverse de 1,25... On pourrait les écrire 4/5 et 5/4 ! 😀

  • @sirene18
    @sirene18 Рік тому

    oui ça m'a plu :-)

  • @stumme
    @stumme Рік тому +1

    Perso, ne connaissant pas cette technique de carrés j'ai écrit 2,05 = 41/20 et du coup D² = (41² - (4* 20)²) / 400 = 81/400 (en utilisant a² - b²) soit D = 9/20 = 0,45. Le truc dans les exos sans calculatrice est qu'il faut nécessairement que les résultats tombent justes :)

  • @sebastiendubeaux7223
    @sebastiendubeaux7223 Рік тому

    Salut a toi
    Moi j'étais en 3ème en 1998 , et je n'ai jamais entendu parler de delta.
    Et pourtant j'ai eu mon brevet grasse au maths ou j'étais très fort.
    Continue comme tu fait, ça fait plaisir de réviser. 😁

    • @AArrakis
      @AArrakis Рік тому

      Delta, on voit ça en première ou en seconde.

    • @shylock2
      @shylock2 Рік тому +2

      Tu étais plus fort en math qu'en orthographe...

  • @HeroicProd
    @HeroicProd Рік тому +1

    toujours aussi sympa est facile d'accès. Petite question x1+x2= 2,05 0,8 + 1,25 = 2,05
    Es-ce toujours le cas avec ce genre d'exercice ou s'il existe deux reponses possible en les additionnant on trouve le nombre de base ?

    • @alestane2
      @alestane2 Рік тому +2

      La symmétrie vient du fait que 1/(1/x)=x, donc si ça marche pour x, ça marche pour 1/x; c'est en quelque sorte la même solution vue de façon différente.
      Regarder les propriétés "évidentes", en particulier les symmétries, dans les solutions attendues est un bon moyen de vérifier le résultat, et dans certains cas peut donner des idées sur comment résoudre l'exercice.
      Dire que c'est "toujours le cas avec ce genre d'exercice" dépend de la définition qu'on donne à "ce genre d'exercice"

    • @HeroicProd
      @HeroicProd Рік тому

      @@alestane2 merci beaucoup ^^

  • @yadusolparterre
    @yadusolparterre Місяць тому

    Encore une fois, ce serait vraiment bien de vérifier tes résultats

  • @raynalguillaume
    @raynalguillaume Рік тому +2

    C'était un exercice de 3e, et on le résout avec des notions qu'on aborde maintenant en 1ère (trinôme du 2e degré, delta ...)
    Est-ce qu'en 1960 on étudiait ça en 3e ?
    Est-ce que le niveau global a tant baissé que ça ?

    • @AArrakis
      @AArrakis Рік тому

      Bah oui. Ya quà voir en français. Ma mère a un certificat d’études qui date de… 1942 (oui, elle est encore en vie), c’est-à-dire l’équivalent d’une fin de 5e, elle écrit sans fautes, et elle me bat au Scrabble… pas toujours, mais bien une fois sur trois. Là faut enseigner les participes passés à l’université…

    • @lolomosquito
      @lolomosquito Рік тому +1

      A l'époque, il y avait deux orientations possibles après le cm2:
      - les meilleurs allaient au collège d'où le niveau très élevé de la 3eme
      - les autres allaient préparer le certificat d'études, c'est à dire que jusqu'à l'âge de 13/14 (fin de QUATRIÈME !!!) ils répétaient ad nauseam le programme du cm2.... Faut pas s'étonner qu'ils maîtrisaient tous les départements français...
      Tout ça pour dire que c'était bien différent d'aujourd'hui, mais que c'était pas forcément mieux. Bon, pour moi, c'était mieux, mais certains diront que le savoir est plus démocratisé.
      Perso, je pense qu'on a formé deux générations de médiocres alors qu'avant les gens savaient peu de choses mais ils maîtrisaient ce qu'ils savaient et étaient donc des adultes beaucoup plus sûrs d'eux...

    • @AArrakis
      @AArrakis Рік тому

      @@lolomosquito oui. ça donne tous les grands experts qui pendant la pandémie nous disaient “je ne suis pas médecin mais… “. Le savoir démocratisé mal compris est-il pire que pas de savoir... Je ne dis pas que c’était mieux avant, mais en tout cas il y a lieu de s’inquiéter pour l’avenir.

    • @lolomosquito
      @lolomosquito Рік тому +1

      @@AArrakis en fait, il faut dire que j'ai plutôt un point de vue politique.
      Je m'explique :
      Je travaille dans le secteur du bâtiment, je suis entouré d'ouvriers qui maîtrisent tous leur spécialité.
      Du coup, je suis confronté à du personnel qui a un caractère fort et qui sait de quoi il parle et ce qu'il veut.
      Ce que je veux dire par là, c'est que même si on a peu de connaissances, le fait de les maîtriser donne une grande confiance et une affirmation de soi.
      Le problème du collège, malgré le fait que ça a généralisé des connaissances scientifiques et littéraires, ça a habitué le peuple à "viser la moyenne", à passer juste, ça a donné conscience aux gens de leur propre médiocrité. Les gens, en général, sont moyens de la sixième au bac, se satisfont de ce qu'ils ont, et restent gentiment à la place qu'on leur a donné parce qu'ils savent qu'ils s'en sont tirés ric-rac toute leur adolescence, et que c'est pareil à l'âge adulte.
      Alors que du temps du certificat d'études, le jeune avait des connaissances moindres mais maîtrisées. Il était plus sûr de lui, plus confiant, plus arrogant aussi, et après l'acquisition de son métier était beaucoup plus fier de sa place dans la société.
      C'est un plaisir pour moi de voir cette attitude lorsqu'un plombier ou un peintre exige que je le paye 3000€ par mois en tapant du pied, parce que je vois là cette affirmation de soi qui a disparu de l'œil de la plupart de nos concitoyens. Et je pense que le collège unique, malgré ses idéaux généreux, a une grande part dans l'affaiblissement général des revendications de nos concitoyens.
      C'est mon côté révolutionnaire qui parle 😎

    • @AArrakis
      @AArrakis Рік тому

      @@lolomosquito je suis d accord. Je vois chez de nombreux jeunes une angoisse terrible parce qu on ne cesse de leur donner des “béquilles “ qui les font passer tout juste, mais ils n’ont jamais la fierté d’avoir passé une vraie épreuve. C est triste

  • @yugapillon1343
    @yugapillon1343 Рік тому

    Le 4.2025, je l'ai trouvé en décomposant 2.05 en 2+0.05
    Ca donne (2+0.05)², et j'ai fait l'identité remarquable, donc 2²+2*2*0.05+0.05²
    4+0.2+0.0025=4.2025 (j'avoue, faut pas se mélanger avec la virgule)
    Pour trouver le 0.45, j'ai tatonné
    Comme ca se termine par 25, je me suis douté que c'etait un nombre qui se finit par 5, donc j'ai testé avec 35, 55, (ça tombait entre les 2) et 45
    (Et pares, vu que 0.2025, c'est juste 2025*1/10000, j'ai trouvé que c'est 45*1/100, donc 0.45
    Apres, c'etait assez facile, et j'ai d'ailleurs noté que les 2 solutions étaient l'inverse l'une de l'autre (ce qui est logique en vrai, vu que l'inverse de l'inverse, on retombe sur ses pattes, on se serait trouvé a 4 solution si les 2 solutions n'étaient pas inverses)

  • @antoinesicot3879
    @antoinesicot3879 Рік тому

    Vous auriez pu ajouter le fait que les deux racines sont inverses l'une de l'autre. Et plus généralement que l'on pouvait savoir dès le début qu'il y aurait 2 solutions distinctes car si x est l'inverse de y alors y est l'inverse de x et réciproquement, et x est différent de y car si x=y alors x=y=1 et la somme fait alors 2. Mais super vidéo tout de même !

  • @ChristopherCompagnon1AndOnly

    Il y a peut-être un second niveau : 2,05 au carré, c'est (2 + 0,05) au carré. Tt 0,05 c'est 1/20. Et le carré se calcule de tête de façon fractionnaire…
    Et le 2 devient alors un 4 (plus quelque chose) qui, comme part hasard disparaît avec le -4ac… il ne reste plus que le quelque chose.

  • @LaurentBessondelyon
    @LaurentBessondelyon Рік тому

    un chiffre qui s'écrit comme : y5
    (y5)²-> (y+5)²->y²+2*5*y+25->y*(y+10)+25 comme y s'écrit comme 10*x
    (y5)²->10²*x*(x+1)+25

  • @Paul_pls
    @Paul_pls Рік тому +1

    Pour le √Δ, j'ai utilisé la même méthode que pour le carré d'un nombre qui se termine par 5 mais dans l'autre sens. Le nombre finit par 25 donc on cherche un nombre qui finit par 5. Ensuite, je me suis demandé quel chiffre multplié par le chiffre suivant donnait 20... ben 4x5. Et voilà √Δ = √0.2025 = 0.45

  • @tvmy121
    @tvmy121 Рік тому

    Vidéo intéressante.
    Il est dommage de ne pas avoir proposé une résolution moins formaté (résolution second degré) et de ne pas avoir fait remarquer que les solutions étaient forcément inverse l'une de l'autre.
    Cela ne retire pas la qualité de l'explication.

  • @bylethmurmur7054
    @bylethmurmur7054 Рік тому

    X+(1/X) = 2.05
    X^2- 2.05X + 1 =0
    Note : (car *x puis -2.05)
    D = (2.05)^2 - 4*1*1 = 4.2025 - 4 = 0.2025
    sqrt(0.2025)= 0.45 (2solutions)
    2.05(-/+)0.45)/2 = 1.25 5/4 et 0.8 4/5
    On vérifie 5/4+4/5= (25+16)/20 = 45/20 = 2.05
    Astuce pour calculs de tête (identités remarquables) :
    2.05^2 = (210*200+25)/100^2 car
    (200+5)^2 = 200*200+ 10*200+25 = (200+10)*200+25 = 210*200+25
    Même logique mais inverse pour le sqrt(0.2025), 20 étant 4*5 alors 2025 est donc le carré de 45 (après on complète avec les zéros mais ce n'est pas trop difficile)

  • @christianlefevre2720
    @christianlefevre2720 Рік тому

    Puisque ce problème concernait une classe de 3ème. Quelle était la solution avec un bagage de 3ème ?

  • @Soudchaser91q41
    @Soudchaser91q41 Рік тому

    A l'époque on apprenait la méthode pour extraire "à la main" une racine carrée. Mais c'est évident qu'un tel exercice en 3ème aujourd'hui, même avec machine, ne serait pas fait par les élèves.

  • @kerianleborgne276
    @kerianleborgne276 Рік тому

    Salut! Étant diplômé d'ingénieur, j'aime bien regarder tes vidéos pour me replonger dans les calculs et raisonnements mathématiques que j'adorais à l'époque.
    En te focalisant sur les calculs tu perds énormément de temps dans ta vidéo (et quand tu fais l'exercice).
    Il aurait été élégant de trouver que 2.05=41/20, dans ce cas le calcul du delta donne : (41²-20²*4)/20², or 20²*4 c'est 40². Donc sans calcul trop complexe la différence de deux carré consécutifs = la somme des valeur de base : 41²-40²=41+40=81 (d'après identité remarquable a²-b²)
    Donc delta vaut 81/20²=(9/20)²
    Ce qui simplifie énormément la recherche de solutions (sachant que les deux sont inverses l'une de l'autre, tu ne l'as pas précisé, chose visible d'après l'énoncé directement)
    Merci pour ton travail

  • @dlep9221
    @dlep9221 23 години тому

    Je sais que ce n'est pas bien 😁mais j'ai posé la question à Copilot : trouver un nombre qui additionné à son inverse donne 2.05
    Pour trouver un nombre ( x ) tel que ( x + \frac{1}{x} = 2.05 ), nous pouvons mettre en place une équation et la résoudre. Voici les étapes :
    Établir l’équation : ( x + \frac{1}{x} = 2.05 )
    Multiplier chaque terme par ( x ) pour se débarrasser du dénominateur : ( x^2 + 1 = 2.05x )
    Réarranger l’équation sous la forme d’une équation quadratique : ( x^2 - 2.05x + 1 = 0 )
    Cela ressemble à l’équation que nous avons résolue précédemment. En utilisant les solutions que nous avons trouvées, ( x_1 = 1.25 ) et ( x_2 = 0.8 ), nous pouvons vérifier laquelle de ces solutions satisfait l’équation originale.
    Pour ( x_1 = 1.25 ) : ( 1.25 + \frac{1}{1.25} = 1.25 + 0.8 = 2.05 )
    Pour ( x_2 = 0.8 ) : ( 0.8 + \frac{1}{0.8} = 0.8 + 1.25 = 2.05 )
    Les deux solutions, 1.25 et 0.8, satisfont l’équation. Donc, le nombre que vous cherchez peut être soit 1.25 soit 0.8. Chacun de ces nombres, ajouté à son inverse, donne 2.05.

  • @guillyaume
    @guillyaume Рік тому +1

    0,8 et 1,25 pas besoin d'une vidéo de 10 min, juste d'un delta😄