A radical system of equations

Поділитися
Вставка
  • Опубліковано 20 січ 2025

КОМЕНТАРІ • 54

  • @echandler
    @echandler 4 роки тому +17

    xy = 12, x^2 + y^2 = 25
    corresponds to the Pythagorean triple (3,4,5)
    thus (3,4) (4,3) (-3,-4) (-4,-3)
    are solutions

  • @asitmahata9831
    @asitmahata9831 3 роки тому +1

    Very good... It can also be solved in this way :
    xy=12 i.e., 2xy=24...(i)
    x²+y²=25... (ii)
    Firstly adding equation(i) and(ii), we get :
    (x+y)²= 49 i.e., x+y=±(7)... (iii)
    Secondly, equation(ii)- equation(i), we get :
    (x-y)²=1 i.e., x-y=±(1)...(iv)
    Solving equation (iii) and equation(iv), we now get:
    {x, y} ={4, 3}, {4, -3}, {-4, 3}, {-4, -3}

  • @golddddus
    @golddddus 4 роки тому +2

    5:49 xy=12 x^2+y^2=25, Shorter solution: 2*xy = 24. (x+y)^2=49;(x-y)^2= 1 then system equations x+y=±7, x-y=±1.
    From symmetry only 4 real solution (±3,±4) and (±4,±3). But there are complex solution to.

    • @SyberMath
      @SyberMath  4 роки тому

      Nice!

    • @shmuelzehavi4940
      @shmuelzehavi4940 2 роки тому

      What complex solutions ???
      You did not restricted yourself to real solutions and the relations: xy = 12, x^2 + y^2 = 25 result from the given equatios, implying (as you have shown) the only 4 solutions: {(x,y)} = { ±(4,3), ±(3,4) }. There are no aditional solutions, not real and not complex.

  • @arekkrolak6320
    @arekkrolak6320 3 роки тому +2

    You dont get 4 pairs of solutions, just 2. Product is 12 so they are both negative or both positive. Because of this it dors matter which of the two equations of the system you use after solving the square equation :)

  • @tapandatta4724
    @tapandatta4724 2 роки тому

    There will be two more solutions interchanging x and y. As there is a symmetry between x and y. Hence, altogether there are grout solutions.

  • @MrLidless
    @MrLidless 2 роки тому

    At 5:30 you could have sped it up by:
    x^2 + 2xy + y^2 = 25 + 2*12 = 49 = (x + y)^2. So x + y = ±7
    x^2 - 2xy + y^2 = 25 - 2*12 = 1 = (x - y)^2. So x - y = ±1 etc

  • @ribhuhooja3137
    @ribhuhooja3137 3 роки тому

    Trigonometric Substitution: x = r cos theta, y = r sin theta
    Dividing the equations we get the value of sin 2 theta. Using sin 2 theta = 2 tan theta/ 1 + tan^2 theta, we can find tan theta (y/x).
    r can be found by substituting in sin 2 theta

  • @aliasgharheidaritabar9128
    @aliasgharheidaritabar9128 3 роки тому

    Fantastic problem and solution.

  • @piyushdaga357
    @piyushdaga357 4 роки тому

    Commendable and praise worthy work

  • @djvalentedochp
    @djvalentedochp 4 роки тому

    Divide both equations, as both of them don't contain any zero, you get x = ±3y/4 and x = ±4y/3. Given the symmetry of the problem, we only have to solve for x = ±3y/4 and pick all permutations of the answer. Make the substitution on the second equation and you get |y^3| = 27 which is the same as y = ±3, hence x = ±4. So the solutions are (-4, -3), (-3, -4), (3, 4), (4, 3).

  • @jamesmccamish3901
    @jamesmccamish3901 Рік тому

    Really liked the problem. But I couldn't follow it after about 4:41 mark, probably due to short cuts that everyone else would get. Anyway, I have to educate myself more to follow your vids. But I really like your channel.

  • @taba3514
    @taba3514 4 роки тому +2

    Hi
    If you divide the first equation by the second you have :
    x=(3/4)y OR x=(4/3)y

    • @SyberMath
      @SyberMath  4 роки тому

      Good thinking!

    • @tmacchant
      @tmacchant 3 роки тому

      I also solve in the same way.

  • @aashsyed1277
    @aashsyed1277 3 роки тому

    VERY VERY NICELY DONE!

  • @b.a.6731
    @b.a.6731 4 роки тому

    I liked your way to solving equations:) thanks

  • @davidseed2939
    @davidseed2939 3 роки тому

    When you see xx+yy=25
    You could.guess a 3,4,5 triangle and when xy=12
    that confirms it.
    You just have to remember to take the negative pair -3,-4 and note the symmetry in x&y so that
    They can be swapped .

  • @emrearslan4351
    @emrearslan4351 3 роки тому

    Is {-4,-3} false?

  • @CriticSimon
    @CriticSimon 4 роки тому +1

    Aren’t (3,4) and (4,3) both solutions? Also their opposites?

    • @SyberMath
      @SyberMath  4 роки тому

      Yes! That's correct! I forgot to switch x and y.

    • @LOL-gn7kv
      @LOL-gn7kv 4 роки тому +1

      Yep they are symmetric in x and y

    • @CriticSimon
      @CriticSimon 4 роки тому

      @@LOL-gn7kv cool. I like the video

  • @hkemal2743
    @hkemal2743 4 роки тому

    Great content. Thank You 😊

  • @tonyhaddad1394
    @tonyhaddad1394 4 роки тому

    Why you dont use t = 9

    • @SyberMath
      @SyberMath  4 роки тому +1

      because that case is already covered. 9+16=25

  • @pralhadraochavan5179
    @pralhadraochavan5179 Рік тому

    Good afternoon sir

  • @050138
    @050138 3 роки тому

    Actually since the equations are symmetric wrt x and y, we get 4 solutions by writing (x, y) as (y, x) too....

  • @valerykolesnikov3724
    @valerykolesnikov3724 2 роки тому

    Author didn't find two more solutions (3;4) and (-3;-4). Тhis follows from the fact that the original equations are symmetric with respect to x and y

  • @anksssssssss
    @anksssssssss 3 роки тому

    Why can't (3,4) , (-3,-4) be solutions ???

  • @flash_back4524
    @flash_back4524 Рік тому

    I guess you're missing 2 other solutions which are (3;4) and (-3;-4)

  • @piyushdaga357
    @piyushdaga357 4 роки тому

    Man where do you live?

    • @SyberMath
      @SyberMath  4 роки тому +1

      Good question! Perhaps I will publicize that one day, maybe Monday! 😊

  • @AllanPoeLover
    @AllanPoeLover Рік тому

    There are 4 solutions to this equation : (3, 4), (-3, -4), (4, 3), (-4. -3)

  • @carly09et
    @carly09et 2 роки тому

    hypobolic sub let r ::= the radical

  • @karunakarreddyg3395
    @karunakarreddyg3395 4 роки тому

    (±3,±4) and (±4,±3)

    • @SyberMath
      @SyberMath  4 роки тому +1

      Good! (3,-4) doesn't work, does it?

    • @karunakarreddyg3395
      @karunakarreddyg3395 4 роки тому

      @@SyberMath (3,4).(4,3).(-3,-4).(-4,-3)

    • @SyberMath
      @SyberMath  4 роки тому

      @@karunakarreddyg3395 That's right!