The strange cousin of the complex numbers -- the dual numbers.

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 816

  • @Aegisworn
    @Aegisworn 2 роки тому +2042

    My favorite application is for dual numbers is automatic differentiation. If you define some basic arithmetic operations for dual numbers on a computer, then run a function defined in terms of these modified definitions on the argument of interest + epsilon, you automatically get out both the value of the function at the argument as well as its derivative. This has pretty big implications for machine learning since you can immediately do your backpropagation since you computed the derivative of the loss function in parallel with its value.

    • @braden4141
      @braden4141 2 роки тому +131

      That is genius to do it that way

    • @alonamaloh
      @alonamaloh 2 роки тому +169

      I'm not sure about that last bit. The procedure you described is known as "forward mode automatic differentiation", while for backpropagation you'd need "reverse mode automatic differentiation". Reverse mode can also be implemented by providing a special type that keeps track of the value of a variable and the derivative of the loss function with respect to that variable, but this second number can only be computed in an additional backward pass.

    • @DeanCalhoun
      @DeanCalhoun 2 роки тому +11

      seriously? that’s crazy, so cool!

    • @alonamaloh
      @alonamaloh 2 роки тому +84

      @@Michael-vs1mw Multi-dimensional dual numbers (i.e, R[epsilon_1,epsilon_2,..., epsilon_k], with epsilon_i*epsilon_j=0) certainly work to compute a whole gradient, but computing the gradient this way takes about k times longer than computing the original function, and also k times more space. With reverse-mode differentiation, you can take a gradient with respect to a million variables (say, weights in a modest-size neural network) in only about twice the running time of the forward function and with space proportional to the number of computations (you need to remember intermediate values of computations).
      Computing Hessians is impractical for large numbers of variables because the matrices are huge, but one can multiply the Hessian times a vector in about four times the original running time, by computing the gradient of (the gradient of the function dot-times the vector). For some algorithms (like the conjugate gradient method) that's all you would need.
      Disclaimer: I haven't thought about this in a few years, so I might have said something incorrect.

    • @oraz.
      @oraz. 2 роки тому +27

      You described autodiff better in a comment than all the online tutorials imo.

  • @conoroneill8067
    @conoroneill8067 2 роки тому +281

    This is actually used by programmers for automatic differentiation ('autodiff') - it allows for some fast computation techniques of the derivative of complicated functions.
    Autodiff isn't always presented in this way, but it's an interpretation which I find very intuitive.

  • @alessandrorenna1222
    @alessandrorenna1222 2 роки тому +915

    As an engineer, It reminds me of epsilon being an infinitesimal, so that epsilon^2 is just and infinitesimal of higher order, hence negligible in the scale of simple epsilon. Given the application with derivatives, I think it makes sense

    • @NutziHD
      @NutziHD 2 роки тому +113

      Yes it even makes sense rigorously in a setting called smooth infinitesimal analysis. Here your number line R is filled with infinitesimals, where some have the property e^2 = 0. Here every function is infinitely differentiable and the derivative f‘ of f: R -> R is uniquely determined by f(x+e) = f(x) + ef‘(x), where e is a nilsquare infinitesimal (e^2 = 0). This is basically the Taylor expansion where the higher order terms are neglected as you said.

    • @iz8dwf
      @iz8dwf 2 роки тому +6

      You did study engineering at University of Pisa in the early '90s, didn't you? :)

    • @bonwood0530
      @bonwood0530 2 роки тому +8

      Yes, just like what we had done in perturbation theory.

    • @Lolwutdesu9000
      @Lolwutdesu9000 2 роки тому +10

      You cannot simply say an infinitesimal squared is negligible, a mathematician would cringe.

    • @Astrophysikus
      @Astrophysikus 2 роки тому +22

      I thought the same. As a physicist, the concept is pretty clear to me on an intuitive level. Never have I seen it formalized like that though.

  • @goodplacetostop2973
    @goodplacetostop2973 2 роки тому +236

    10:00 I agree. Brown is okay for boxes, not so much for writing
    19:12 « In 1876, Clifford suffered a breakdown, probably brought on by overwork. He taught and administered by day, and wrote by night. A half-year holiday in Algeria and Spain allowed him to resume his duties for 18 months, after which he collapsed again. He went to the island of Madeira to recover, but died there of tuberculosis after a few months » Well, damn…

    • @ΕχιΜιμζ
      @ΕχιΜιμζ 2 роки тому +3

      I don't like him, just by reading his overall personality in wikipedia. Maybe Euler was better.

    • @Noam_.Menashe
      @Noam_.Menashe 2 роки тому +7

      19:17?

    • @FranFerioli
      @FranFerioli 2 роки тому +17

      @@ΕχιΜιμζ what's wrong with Clifford personality in general and his Wikipedia page in particular?

    • @nombreapellido310
      @nombreapellido310 2 роки тому +4

      @@FranFerioli he is the guy who says "wow, this person revolutioned the cience, but is an asshole, he is worthless and x person is better because was a nice person"

    • @nombreapellido310
      @nombreapellido310 2 роки тому +3

      Also, Euler is better than any mathematician, I dont doubt that

  • @mathematicalmachinery7934
    @mathematicalmachinery7934 2 роки тому +6

    I like the brown chalk because the brighter colors pop out in contrast, making it easier to focus on the writing as opposed to the organization.

  • @solsolsolsolsolsolsolsol
    @solsolsolsolsolsolsolsol 2 роки тому +407

    fun fact: unlike C, R[eps] is an ordered ring. it has two valid orderings, defined by either eps>0 or eps

    • @danapples
      @danapples 2 роки тому +21

      where do i learn more about this mysterious epsilon???

    • @zswu31416
      @zswu31416 2 роки тому +7

      You can "order" C as well, in the same way, but neither ordering is a well-ordering.

    • @אביב-ת7ל
      @אביב-ת7ל 2 роки тому +1

      so is it a lexicographic ordering?

    • @shortcutz6491
      @shortcutz6491 2 роки тому +26

      @@zswu31416 actually you cannot order C in the same way. to be an ordered ring does not just mean that you have a ring with an understood order- it implies two extra axioms about how the ordering interacts with the two operations.

    • @zswu31416
      @zswu31416 2 роки тому +6

      @@shortcutz6491 Oh yeah now I realize what "ordered ring" actually means. How stupid of me.

  • @tiborgrun6963
    @tiborgrun6963 2 роки тому +218

    I think another application for this is in numerical analysis, where for some machine precision ε you have for example multiplication of two machine numbers (a + ε) (b + ε) + ε = ab + (a+b+1)ε + ε^2 but you treat ε^2 as 0, since ε is already very small.

    • @Nikolas_Davis
      @Nikolas_Davis 2 роки тому +27

      Also, automatic differentiation,
      en.wikipedia.org/wiki/Automatic_differentiation#Automatic_differentiation_using_dual_numbers

  • @mMaximus56789
    @mMaximus56789 2 роки тому +118

    It would be amazing if you could cover the geometric numbers, also created by Clifford (and Grassman), which generelize the complex, duals and hyperbolic numbers, even to any dimensions, with relative ease (plus you can do calculus with it!)

    • @74bassman
      @74bassman 4 місяці тому

      Thatd be dope, do you know of any videos like this guy that have about it, I am not very advanced math yet but this video was easy to follow (except for summation part, I am not familiar with it lol)

    • @mujtabaalam5907
      @mujtabaalam5907 4 місяці тому

      ​@@74bassmanjust search geometric algebra and look at the videos and playlist

  • @mr.soundguy968
    @mr.soundguy968 2 роки тому +41

    This is also a nice perspective on how to compare them:
    1. C is ring-isomorphic to R[X]/(X^2+1). Meaning that the complex numbers as a field together have the same additive and multiple structure as all polynomials with real coefficients where we identify two such polynomials if their difference is an R[X]-multiple of X^2+1
    2. R(epsilon) is ring-isomorphic to R[X]/(X^2).

  • @DrBillPezzaglia
    @DrBillPezzaglia 2 роки тому +32

    Great video, but somewhere you should mention the term that epsilon is a "nilpotent". Vector spaces can be often written in terms of idempotent and nilpotent basis elements (idempotents are things that square to themselves, like "1"). Application: In physics, the 4-momentum vector of a photon would be a nilpotent (interpreted as photon has no rest mass). -From a physicist that spent a (lost) lifetime studying Clifford's algebra.

  • @alre9766
    @alre9766 2 роки тому +54

    I had never heard of dual numbers before, thank you for broading my horizon.

  • @AylaTheQueenIdk
    @AylaTheQueenIdk 2 роки тому +194

    I think your opinion on the brown chalk is accurate, in that it works as a divider and for boxes, but probably not for writing

    • @Grizzly01
      @Grizzly01 2 роки тому +13

      If I were Michael, I probably wouldn't use the brown chalk for writing, but I would definitely use it to draw divider lines and boxes.

    • @JammyMiddleofN
      @JammyMiddleofN 2 роки тому +14

      I think if I had ordered brown chalk on a whim, I would probably use it for dividers and boxes, but I don't think I would use it much for actual writing

    • @lawrencedoliveiro9104
      @lawrencedoliveiro9104 2 роки тому +11

      There is no “brown”; there is only “orange with context”.
      (Look it up.)

    • @muenstercheese
      @muenstercheese 2 роки тому

      I concur.

    • @disnecessaurorex4908
      @disnecessaurorex4908 2 роки тому +5

      @@lawrencedoliveiro9104 Tecnology Connections moment

  • @mathunt1130
    @mathunt1130 2 роки тому +166

    I've come across these in the past in the context of rotations and translations in rigid body dynamics but they're a bit old fashioned now. People tend to use *geometric algebra* now as this provides a really nice framework for rotations and translations. Geometric algebra was pioneered by David Hestenes and picked up by Anthony Lasenby and Chris Doran and they have a nice introduction to the main ideas in geometric algebra and geometric calculus.

    • @FranFerioli
      @FranFerioli 2 роки тому +24

      I think geometric algebra was first discovered but the Clifford guy mentioned here. Unfortunately he died young and his discoveries were forgotten until being revived in modern fashion by the people you mention. As others mentioned in the comments, geometric algebra pretty much follows from these concepts.

    • @b43xoit
      @b43xoit 2 роки тому +6

      That's interesting, because W'pedia mentions the application to rigid bodies but does not point out that it is obsolete.

    • @JoaoBapt
      @JoaoBapt 2 роки тому +2

      I remember reading about dual quaternions as a good way to do vertex skinning on the GPU, being a compromise between full rot/trans matrices and normal (real) quaternions. It would be good because dual quaternions could encode rotation *and* translation, allowing for smooth blending between the transforms in vertex skinning.

    • @sergeboisse
      @sergeboisse 2 роки тому +2

      Yes ! For an introduction to geometric algebra, look at ua-cam.com/video/60z_hpEAtD8/v-deo.html&ab_channel=sudgylacmoe

    • @JimSmithInChiapas
      @JimSmithInChiapas 2 роки тому +2

      LInkedIn has two Geometric Algebra groups. One is called "Geometric Algebra", and the other is "Pre-Univerisity Geometric Algebra". Your participation will be welcome in both. I, myself, have several videos on GA that are meant primarily for self-learners like me.

  • @harrisonkaiser6665
    @harrisonkaiser6665 2 роки тому +101

    If you do a talk on geometric algebra and connect it to epsilon in the dual numbers that would be one I’d definitely watch!

    • @NutziHD
      @NutziHD 2 роки тому +24

      Yes definitely!:) Geometric Algebra is basically build on the generalization of complex, dual and split-complex numbers (e^2 = -1, 0, 1 respectively) and adds higher grade objects as well as the geometric product to connect everything.

    • @angeldude101
      @angeldude101 2 роки тому +9

      Most vector algebras struggle with multiplying vectors. GA lets you multiply vectors and it gives... a complex number‽ And people previously thought complex numbers _were_ vectors!

    • @rajinfootonchuriquen
      @rajinfootonchuriquen 2 роки тому +5

      @@angeldude101 complex numbers are vectors. A k-vector is a vector, matrices are vector, polynomials are vector. Anything could be a vector is you choose to think of it as a vector and obviously has vector properties.

    • @angeldude101
      @angeldude101 2 роки тому +4

      @@rajinfootonchuriquen Yay for vector meaning both a one dimensional geometric object as well as an abstract mathematical object. The former is the latter, but not all instances of the latter are the former.
      Now I'm curious what you get of you try forming a Clifford Algebra around an abstract vector space that isn't a simple quadratic form. What would it mean to take the wedge product of two functions?

    • @rajinfootonchuriquen
      @rajinfootonchuriquen 2 роки тому

      @@angeldude101 I don't now. I don't advocate for using Clifford algebra. I don't know much about it but for instance, i know that you can get a nice maxwell equation, but it seems odd that the magnetic field is a bivector field. I don't know how to picture a bivector field.
      If you try to take a wedge product between that type of vectors, I think it should span out of your vector space, so it's undefine.

  • @KevinBancroft-ur9gk
    @KevinBancroft-ur9gk Рік тому +1

    Love the brown chalk, it's like a highlighter for the chalk board. Not good on its own but it makes other things pop.

  • @harleyspeedthrust4013
    @harleyspeedthrust4013 2 роки тому +24

    You could use this in error analysis - say when multiplying two measurements with some error in each of them
    We used to use these in physics sometimes to write down the correct differential equations describing a system - never knew they had a formalism called "dual numbers"

  • @RichardLightburn
    @RichardLightburn 2 роки тому +8

    You're right about brown.
    I enjoy the advanced topics, rock climbing videos, and number theory ('cause I know nothing about number theory).
    I enjoy contest problems, slightly, but not as much.

  • @kevinj508
    @kevinj508 2 роки тому +1

    The brown chalk is perfect for "dividing lines" as you used it, easy to distinguish, yet not distracting.

  • @2Cerealbox
    @2Cerealbox 2 роки тому +2

    This is my new favorite channel on UA-cam. I love making some very simple assumptions and seeing where it leads. Its all very simple, logical, and easy-to-follow.

  • @praharmitra
    @praharmitra 2 роки тому +63

    Great introduction. I think you should also extend it a bit more to include multiple Grassmanian variables $\epsilon_1$, $\epsilon_2$, etc.

  • @mattlawyer3245
    @mattlawyer3245 Рік тому +2

    This is the first of your videos that I've ever seen and I've loved it. I've never heard of dual numbers, but they seem fascinating, and I plan to make a study of them.

  • @acer1313137
    @acer1313137 2 роки тому +4

    Just found this channel. Excellent video; concise, interesting, and well thought out. Really loved the old school blackboard style. Reminds me of undergraduate lectures

  • @CliqueSpace
    @CliqueSpace 2 роки тому +9

    So, what silliness can one get by mixing dual and complex numbers?

  • @Zonnymaka
    @Zonnymaka 2 роки тому +5

    This is by far my fav YT math channel, period. Thank you Mr.Penn!

  • @DeanCalhoun
    @DeanCalhoun 2 роки тому +7

    never encountered these before, what a cool and interesting concept. the derivative result is especially cool. thanks michael

  • @charlesalbright
    @charlesalbright 2 роки тому +3

    Such a great video Mike. I’ve noticed some people get weird when talking about non-conventional numbering systems like the dual numbers. Great work again on your part.

  • @MTd2
    @MTd2 2 роки тому +66

    This is known in physics as Grassmann directions, in the special case of 1 number. They are used to build the bases of superfields.

    • @hbm293
      @hbm293 2 роки тому +11

      It would be interesting to see how integration over the dual numbers is done, and whether it generates something akin to differentiation, as what happens with grassmann numbers.

    • @pacotaco1246
      @pacotaco1246 2 роки тому

      @@hbm293 ua-cam.com/video/u58b-OgqvqQ/v-deo.html this video covers integrating functions of grassmann numbers for physics problems

  • @ivanklimov7078
    @ivanklimov7078 2 роки тому +2

    the brown chalk is great, you should use it for boxing, crossing things out when they cancel and such. sometimes i find all the bright colors you use a little distracting, but this color is really nice imo

  • @gastonsolaril.237
    @gastonsolaril.237 2 роки тому +14

    Dude, if I was taught this in Discrete Control course during 5th year of Electronic Engineering, everything would have been so much easier... GREAT video.
    In fact, I have an idea: in digital controller design, one could approach the dynamical system with a state-space methodology, and design the controlling equation with the so-called "deadbeat response". It is choosing the poles of the system so that the state-space matrix that governs the controlled system, to go to zero after "k" ticks / periods (if the system is capable of reading the sensors every 0.01 seg, then when (t = 0.01 seg, k = 1), (t = 0.02, k = 2), etc... )
    The state-space matrix is then turned into what's called a NILPOTENT matrix, case in which the matrix "G" powered by some "n" is equal to zero, where "n" is the matrix size. Then: "A ^ 2 = 0". In this case, the matrix representation of the dual numbers takes into account that matrices are of size 2 (x 2). Therefore "epsilon ^ 2 = 0". So my idea is: shouldn't we divide a DUAL number into its REAL part, and its NILPOTENT part? I think that sounds accurate!

  • @mattiasselin4955
    @mattiasselin4955 2 роки тому +33

    Nice! Suggestion for follow-up video: Show that given any rule like "i^2 = a+bi", where a and b are real numbers, R(i) is isomorphic to exactly one of "i^2 = -1" (complex numbers), "i^2 = 0" (dual numbers) or "i^2 = 1" (I'm sure it has a name)

    • @themattcohen
      @themattcohen 2 роки тому +9

      There's not a single standard name: en.wikipedia.org/wiki/Split-complex_number

    • @mattiasselin4955
      @mattiasselin4955 2 роки тому +5

      @@themattcohen Now I don't feel too bad about not remembering it 😅

    • @NutziHD
      @NutziHD 2 роки тому +4

      Nice video suggestion!

  • @JonathanMandrake
    @JonathanMandrake 2 роки тому +9

    That application at the end really blew my mind! In the first semester of my maths bachelor we learned how to compute Matrix exponentiations as well as matrix exponentials quickly, both in the diagonal and Jordan forms as well as by bringing the matrix into such a form. I vaguely remembered how it worked, but I never really understood why it really worked that way, I knew how to write it down with formulas, but there wasn't any deeper understanding. But now, with the translation of the problem into the dual numbers, it was like a dozen lightbulbs went off in my head at once! Really great application and connection between the two areas.

  • @romajimamulo
    @romajimamulo 2 роки тому +2

    10:16 that's correct, very good for borders, not so for writing

  • @willfrank961
    @willfrank961 2 роки тому +1

    The brown chalk bit cracked me up. Thanks for this

  • @ffggddss
    @ffggddss 2 роки тому +2

    This is a whole new world I was unfamiliar with. Fascinating. Thank you!
    Fred

  • @fejfo6559
    @fejfo6559 2 роки тому +14

    I wonder if these have some sort of polar form...
    TLDR:
    - a is like the modulus and b/a is like the angle
    - addition in polar form is done by adding the "moduli" and taking the weighted average of the "angle"
    - mutliplication in polar from is done by multiplying the moduli and adding the angles, exactly like with complex numbers.
    Here is my derivation:
    (a+bε)² = a²+2abε
    (a+bε)(a-bε) = a²
    exp(x)= 1+x+x^²/2+...
    exp(bε) = 1+bε
    (a+bε)^n = a^n + n*a^(n-1)bε
    exp(a+bε) = exp(a)(1+bε) (derivative argument)
    ln(a+bε) = ln(a) + b/aε
    a+bε = a(1+b/a ε) = a*exp(bε/a)
    This suggests representing a+bε as (a, b/a) is good alternative to a polar form. a is like the modulus and b/a is like the angle
    We get:
    (a, A) + (c, C) = a*exp(Aε) + c*exp(Cε) = a+Aaε + c+Ccε = (a+c)exp((Aa+Cc)/(a+c)ε) = (a+c, (Aa+Cc)/(a+c))
    (a, A)*(c,C) = (a+Aaε)(c+Ccε) = ac+(Aac+aCc)ε = (ac, A+C)

    • @IQuick143cz
      @IQuick143cz 2 роки тому +3

      Correct me if I'm wrong but:
      isn't exp(2ε) ≠ exp(ε)² incorrect?
      exp(2ε) =(def)= 1 + 2ε
      exp(ε)² =(def)= (1 + ε)² = (1 + ε)*(1 + ε) = 1*1 + 1*ε + ε*1 + ε*ε = 1 + 2ε
      using the binomial formula you can generalise this to exp(nε) = exp(ε)^n for all natural n

    • @fejfo6559
      @fejfo6559 2 роки тому

      @@IQuick143cz Ah yes you are right, I'll edit the comment

    • @NutziHD
      @NutziHD 2 роки тому +1

      Nice:)

    • @angeldude101
      @angeldude101 2 роки тому

      A "dual angle" is really just a distance along a straight line. In the same way, normal angles and hyperbolic angles are basically just distances along a unit circle or unit hyperbola respectively.

  • @quicksanddiver
    @quicksanddiver 2 роки тому +6

    The representation also yields another (silly) application: you can "simulate" the integers under addition using dual numbers of the form 1+nε under multiplication. Granted, you don't need the matrix representation to see that
    (1+nε)(1+mε) = 1+(n+m)ε
    but it's how I noticed it

    • @angeldude101
      @angeldude101 2 роки тому +1

      I think this is related to the exponential of dual numbers. Much like how exponentiating an imaginary number makes you walk along the unit circle, exponentiating ε makes you walk along a straight line (which is why I sometimes call them and the complex numbers "flat" numbers and spherical numbers respectively due to their relation to the corresponding geometry).

  • @nosnibor800
    @nosnibor800 2 роки тому +7

    Hi, I am a retired UK systems Engineer and I never came across duel numbers before, so thanks Mr Penn. I suppose this is a topic in number theory. Just had a vague thought, has this topic got a link to convergence and limits of a power series ?

  • @vtrandal
    @vtrandal 2 роки тому

    I love the BROWN chalk. You won me over with that. You are fantastic. You're teaching is amazing.

  • @daleb147
    @daleb147 2 роки тому +1

    Very interesting. I worked on a math minor, but never came across Dual numbers. Re the brown chalk, it came across as sort of a dark orange, which worked well for lines and boxes as you noted.

  • @farvision
    @farvision 2 роки тому +20

    The "brown" chalk comes out as a pinkish red and is quite visible. However it is probably always best to have white on black as the contrast makes symbols most clear.

  • @mtaur4113
    @mtaur4113 2 роки тому +2

    11:42 - 12:00, pretty cool attention to detail that you won't want to gloss over.

  • @KaidenBird
    @KaidenBird Рік тому +1

    Hey! Could you cover the dual numbers? Amazing content as always

  • @eytansuchard8640
    @eytansuchard8640 2 роки тому +1

    1) The brown chalk is sufficiently conspicuous to be used on standard chalk boards. 2) Algebraic toys are interesting. 3) It will be nice to see modular functions and a lecture on grids. Thank you Michael.

  • @f5673-t1h
    @f5673-t1h 2 роки тому +6

    R(ε) is just the ring R[x]/(x²)
    Also, I believe all thr 2D R-algebras are (isomorphic to) either C, R², or R(ε).
    They can all be written in a uniform way: R[x]/(x²+1), R[x]/(x²-x), R[x]/(x²), respectively. Notice how the quotient polynomials have different signs for the discriminants (negative, positive, zero). I believe that's the invariant that tells you which of these your 2D R-algebra is isomorphic to.

    • @apophenic_
      @apophenic_ 2 роки тому

      Hello. What?

    • @rosiefay7283
      @rosiefay7283 Рік тому

      Instead of R[x]/(x²-x) you need R[x]/(x²-1), the split-complex numbers.

  • @THEDeathWizard87
    @THEDeathWizard87 2 роки тому +2

    Yeah I basically agree with you on the brown chalk. Might also be good for shading or other small details on diagrams if you don’t want it to get too cluttered idk
    The dual numbers are cool btw I’ve never seen this set before

  • @officiallyaninja
    @officiallyaninja 2 роки тому +2

    you should talk about the split complex numbers too

  • @kenhaley4
    @kenhaley4 2 роки тому +15

    Semantic suggestion: In complex numbers we have the "real" part and "imaginary" part. For dual numbers, how about the "real" part, and "secondary" part? We need a word that's different from "dual", I think.

    • @rob876
      @rob876 2 роки тому +2

      Real Part and Tangential Part? Real Part and Differential Part?

    • @slickytail
      @slickytail 2 роки тому +3

      Finite and Infintessimal?

    • @markusmiekk-oja3717
      @markusmiekk-oja3717 2 роки тому +1

      nilpotential

    • @JamesLaFleur
      @JamesLaFleur Рік тому +1

      I think ε is a nilsquare infinitesimal. So you could
      call the second part the
      infinitesimal part.

    • @pholdway5801
      @pholdway5801 5 місяців тому

      I hardly dare open my trap in such august company but i would like to HUMBLY suggest the name ORTHOGONAL NUMBERS rather than imaginary numbers. i am prepared for cruel withering criticism

  • @TheRealBanana
    @TheRealBanana 2 роки тому +13

    Interesting concept. My maths chops are pretty wimpy so I'm just left wondering if there is a way to produce rotations in the dual number plane, similar to the complex plane. Might make for some interesting visualizations. wrt the brown chalk: I'm reminded by something the channel Technology Connections pointed out, brown is just dark orange without context.

    • @MagicGonads
      @MagicGonads 2 роки тому +4

      multiplying non-zero dual numbers doesn't generally produce rotations since the matrix representation of the non-zero dual numbers generally aren't invertible and rotations are invertible (another way to say it is that information is lost by collapsing the entire dual line to 0 under square, the dual line can be seen as an eigenvector with eigenvalue 0, but rotations have imaginary (and non-zero) eigenvalues)

  • @lucachiesura5191
    @lucachiesura5191 2 роки тому +4

    Interesting! There are some connections with the non standard analysis and Liapunov function...

  • @xshortguy
    @xshortguy 2 роки тому +34

    Question: are the dual numbers constructable using quotients of polynomials in the same way as the complex numbers are? Can I mod out by x^2 in order to form the dual numbers?

    • @guillem1998gmail
      @guillem1998gmail 2 роки тому +22

      I think so. You can observe that the polynomial x² is not irreducible, therefore the quotient will not be a field, and since x² is not prime it will not be an integral domain. It is a nice way to construct these numbers.

    • @theadamabrams
      @theadamabrams 2 роки тому +23

      Yes, the ring of dual numbers is exactly ℝ[x]/(x²), similar to how ℂ ≃ ℝ[x]/(x²+1).

    • @carly09et
      @carly09et 2 роки тому +1

      yep ua-cam.com/video/M412eVW7bf4/v-deo.html is an example. Not exact here but he has it on his wildegg channel. cannot find it quickly :)

    • @MatthijsvanDuin
      @MatthijsvanDuin 2 роки тому +11

      More generally, ℝ has (up to isomorphism) three different quadratic extensions (of commutative rings):
      ℝ[x]/(x²+1) ≅ ℂ
      ℝ[x]/(x²) ≅ ℝ[ε]
      ℝ[x]/(x²−1) ≅ ℝ × ℝ
      For an arbitrary quadratic extension ℝ[x]/(f) of ℝ, the isomorphism class is determined by the sign of the discriminant Δ of the quadratic polynomial f:
      ℝ[x]/(f) ≅ ℂ if Δ < 0
      ℝ[x]/(f) ≅ ℝ[ε] if Δ = 0
      ℝ[x]/(f) ≅ ℝ × ℝ if Δ > 0

  • @bigbadbith8422
    @bigbadbith8422 4 місяці тому

    Hi - every time I tune into this channel, I learn something. Then I realise that I have no idea what I've learned. Outstanding!

  • @barendbe
    @barendbe 2 роки тому +1

    Thanks, this really clears things out. During my engineering studies I was always told we only use first order derivation epsilon because its square is practically zero. While using dual numbers you can show in a more elegant way how first order derivatives are found.

    • @onradioactivewaves
      @onradioactivewaves Рік тому

      I thought epsilon was practically zero to begin with. What application was that for?

    • @barendbe
      @barendbe Рік тому

      @@onradioactivewaves Morisson equations.
      Although it is also used in many other fields of mechanical engineering such as finding equilibria.

  • @RyanBrockey
    @RyanBrockey 2 роки тому

    Dig the brown chalk for boxes and dividers. Good color for just separating meaningful pieces of the work :)

  • @Beniguitar94
    @Beniguitar94 2 роки тому +5

    This was awesome! I was wondering what you get when you combine dual and complex numbers. Something of the form: a + b · i + c · epsilon? {a,b,c} \in R, i^2 = -1, epsilon^2 = 0?

    • @schweinmachtbree1013
      @schweinmachtbree1013 2 роки тому +3

      you would get a + b i + c epsilon + d i epsilon, because without the d term you don't have closure under multiplication

    • @b43xoit
      @b43xoit 2 роки тому

      @@schweinmachtbree1013 Does it have any practical application?

    • @schweinmachtbree1013
      @schweinmachtbree1013 2 роки тому +1

      @@b43xoit well you can use R[epsilon] to do a little bit of non-standard real analysis (see e.g. the wikipedia article on non-standard analysis, although if you want to do proper non-standard analysis then you need the hyperreal numbers), so I guess you could use {a + b i + c epsilon + d i epsilon} = {(a+bi) + (c+di)epsilon} = C[epsilon] to do a bit of non-standard complex analysis :D

    • @longemen3000
      @longemen3000 2 роки тому +2

      In the Julia Programming language, there is a package named ForwardDiff, that allows differentiation of arbitrary function routines via Dual numbers. You could create a complex number where the real and imaginary parts are itself Dual numbers, and it is useful for differentiation of routines that have intermediate complex steps. I, for example, use it to differentiate along a cubic root polynomial solver

  • @William_Fields
    @William_Fields 2 роки тому

    Delightful content and presentation. Brown chalk is a plus for me because it reads softly though clearly.

  • @tiller6750
    @tiller6750 2 роки тому

    I like the brown for delineating spaces on the chalkboard, but not for writing text/calculations.

  • @nixboaski
    @nixboaski 2 роки тому

    This recalls me of asymptotic analysis. The expression a + bε, with 0 < ε

  • @charlesalbright
    @charlesalbright 2 роки тому +1

    This is such a great video Mike. Thank you.

  • @tim57243
    @tim57243 Рік тому +1

    The diversion to briefly discuss brown chalk at 10m is surreal.
    And then the comments on the video are a random mixture of high-level math and opinions about brown chalk. I love this place.

  • @jamiewalton7268
    @jamiewalton7268 2 роки тому +105

    Maybe they should call these "The Physicists' Numbers", as this is how they do maths anyway:
    *"Blah blah blah, and ε² is negligible so we may regard ε² = 0 ..."*

    • @lina31415
      @lina31415 2 роки тому +9

      Those pesky physicists get away with murder!

    • @SeanCMonahan
      @SeanCMonahan 2 роки тому +26

      @@lina31415 "assume the victim is a non-rotating sphere..."

    • @apuji7555
      @apuji7555 2 роки тому +8

      @@SeanCMonahan In a vacuum

    • @hyperduality2838
      @hyperduality2838 Рік тому +4

      Real numbers are their own conjugates -- Duality.
      Complex roots come in pairs -- automorphisms (duality).
      Duality (thesis, anti-thesis) synthesizes reality (non duality) -- the Hegelian dialectic.
      "Philosophy is dead" -- Stephen Hawking.

    • @mannyc6649
      @mannyc6649 4 місяці тому +1

      Or maybe they should be called "The Physicists' Numbers" because they are the mathematical foundation of supersymmetry...

  • @TheIllerX
    @TheIllerX 2 роки тому +2

    Very interesting.
    I work quite a lot with stochastic calculus and see some parallells to that area as well.
    We could introduce another symbol, say q, which squared give the epsilon.
    Then the epsilon would represent the standard differentials dt and q represent the stochastic differential dW for a brownian motion W.
    No idea if anything new would come out of this, but I clearly see the analogy.

  • @lyrimetacurl0
    @lyrimetacurl0 2 роки тому +3

    I like how epsilon^0 = 1 because x^0 = 1 is a deeper magic (only challenged by 0^0 being undefined).

    • @Roescoe
      @Roescoe Рік тому

      So much breaks if you don't define x^0 to be 1. It's pretty interesting.

  • @drakeaske9784
    @drakeaske9784 2 роки тому

    Love the chalk, your writing is very easy to read and you explain things very well. Thank you

  • @crazyoldhippieguy
    @crazyoldhippieguy Рік тому

    02-04-2023.Hi Michael, good to see again, and yes brown is O.K. for ONLY boxing, l use to give this Duel Numbers exercise to my student in Malta back in 1990.

  • @LeonimousGrimm-eg5fl
    @LeonimousGrimm-eg5fl Рік тому +1

    This is how you define the "tangent space " or derivative in algebraic geometry! If X is a variety, and spec k --> X a point, lifts to spec k[eps] --> X are tangent vectors. Keywords: Zariski tangent space, lifting criterion/formally etale, etc

  • @barbietripping
    @barbietripping 2 роки тому

    Brown chalk brings a very elegant flavor to the layout, but I agree it doesn’t pop enough for use on the blackboard. Perhaps different on a greener board

  • @arekkrolak6320
    @arekkrolak6320 2 роки тому +5

    this is quite interesting piece of maths! it reminds me of Galois extension field, but this number system has a big problem, you cannot factorize polynomials properly, sorry I was not aware comments should be about brown chalk :)

    • @lawrencedoliveiro9104
      @lawrencedoliveiro9104 2 роки тому +3

      We should have more of these cool new whiteboards with the dark theme ...

    • @hyperduality2838
      @hyperduality2838 Рік тому

      Sub groups are dual to sub fields -- the Galois correspondence.
      Real numbers are their own conjugates -- Duality.
      Complex roots come in pairs -- automorphisms (duality).
      Duality (thesis, anti-thesis) synthesizes reality (non duality) -- the Hegelian dialectic.
      "Philosophy is dead" -- Stephen Hawking.

  • @Ablatius
    @Ablatius 2 роки тому +9

    Can we see that kind of numbers as a simplification of infinitesimal calculus, where epsilon^2 becomes negligible compared to the rest? How about epsilon^x where x is smaller than 2?

    • @Nikolas_Davis
      @Nikolas_Davis 2 роки тому +12

      I was thinking the same thing. But I would rather say it's a *formalization* of the way we do infinitesimal calculus. It's also similar to non-standard analysis.
      I don't know if there is a standard terminology for the components of a dual number, but what Michael calls the "real" part, I'd rather call the "finite" part, and I'd call the "dual" part the "infinitesimal" part.

    • @Ablatius
      @Ablatius 2 роки тому +6

      @@Nikolas_Davis yeah formalization is much a much better way to describe it. Your proposition for 'finite part' and 'infinitesimal part' would clearly please physicists 😁

  • @starsun7455
    @starsun7455 2 роки тому

    This is great timing. I just started exploring split complex numbers.

  • @peterpeppebrodin
    @peterpeppebrodin 2 роки тому +4

    Made a pedagogical observation: The way he writes "implies" can, when badly written, be interpret as "don't imply". Other vice interesting stuff. 😊

  • @josuel.9598
    @josuel.9598 2 роки тому +17

    You know that this guy is a hardcore mathematician when starts talking about his chalk.

    • @hektor6766
      @hektor6766 2 роки тому +2

      This year's brown Hagaromo is the new yellow Hagaromo. It's an extravagance, but he just had to have it.

  • @volodyanarchist
    @volodyanarchist 2 роки тому +1

    Thanks a lot. Great video. You have forgotten to remove a repetition at 7:09. You can do that in the UA-cam panel, and you don't even need to change the url of the video or lose comments+likes.

  • @owlsmath
    @owlsmath 2 роки тому +1

    I think I'm pretty happy with the brown chalk.

  • @Setiny
    @Setiny 2 роки тому

    But it doesn’t need to be R(ε), it can very well be C(ε) and nothing would have changed.
    Let me apply something I’ve learned in the algebra course this semester:
    First of all, this an artinian ring, with the only ideal I being . Moreover, the ring is communicative, therefore coincides with the Jacobson radical of the ring, where its only irreducible modules are R[ε]/ = R. However R[ε] is an indecomposable module of itself.

  • @lina31415
    @lina31415 2 роки тому +2

    Huh, just as I started to learn non-standard analysis you come with a video on a related topic :D. Maybe some video on hyperreals soon?

  • @MrCreeper20k
    @MrCreeper20k 2 роки тому

    Brown chalk is nice! I agree it’s good for boxes but not just due to its visibility but I feel like brown is a nice box color anyway

  • @CglravgHRjsksgS
    @CglravgHRjsksgS 2 роки тому +1

    My favourite part IS-THE-SUM....😆 I love your videos!

  • @LorenzoClemente
    @LorenzoClemente 2 роки тому

    that question about brown chalk was really deep!

  • @franciscowagnerdemoura3912
    @franciscowagnerdemoura3912 Рік тому

    I agree that the brown chalk should be mostly used for boxes and dividers.

  • @ts4gv
    @ts4gv Рік тому

    brown chalk looks good for the applications you described 👍

  • @gianlucadegliesposti7241
    @gianlucadegliesposti7241 Рік тому

    The way one can define this space is in fact analogous to C: you can view C as the quotient ring R[x]/ and the dual numbers as R[x]/
    The fact that x²+1 is irreducible is enough to ensure that C is a field, while x² is trivially reducible, and in fact ε is not invertible.
    Suppose it is: ε = ε^-1 * ε² = 0

  • @akademesanctuary1361
    @akademesanctuary1361 4 місяці тому

    It’s an open container and content. It’s open because it’s the field in a rotation. The container can be defined a couple ways like 0,1,0,0 or 0,0,-1,0 for 2x2 matrices of elements a,b,c,d. These containers are linear to contain angular and vice versa.
    I use these to define potentials at the roots of imaginary numbers of the forms 0,-1,1,0 and 0,1,-1,0 and their conjugates. In this way you can define the roots of quaternions.

  • @pseudo_goose
    @pseudo_goose 4 місяці тому

    Brown chalk would be good for any "supplementary" text, providing some contrast using different brightnesses (compared to contrast from different colors of similar brightness)

  • @StitchTheFox
    @StitchTheFox 2 роки тому

    The brown chalk is nice and visible. I wouldnt be afraid to use it to underline or seperate things from one another.

  • @thomasjohnston4083
    @thomasjohnston4083 Рік тому

    Great video about a neat topic. Huge admiration for keeping the part at 7:13 in.

  • @legendgames128
    @legendgames128 Рік тому

    Fun fact (that others have pointed out as well): Unlike C, R[epsilon] can be ordered by simply assuming epsilon is greater than or less than 0 (an infinitesimal). In either case, it's similar to the ordering of finite and infinite ordinals.

  • @txikitofandango
    @txikitofandango 2 роки тому

    I like the brown for boxes and divider lines; it reminds me of old computer games like Rogue

  • @jaytravis2487
    @jaytravis2487 Місяць тому

    The concepts this guy presents on this channel are really intriguing. If only they were illustrated/animated/delivered differently I'm sure he would be able to compete with 3b1b

  • @richardbloemenkamp8532
    @richardbloemenkamp8532 Рік тому

    Since you asked, the brown chalk is okay for boxes and divider lines indeed. Not that I'm a reference since I'm a bit colorblind, but maybe nice to know that your chalk colors and color usage has never posed any issue for me as a somewhat colorblind person.

  • @AnCoSt1
    @AnCoSt1 2 роки тому

    I would love a video on formalizing fast-growing hierarchies

  • @landsgevaer
    @landsgevaer 2 роки тому +2

    I think for writing you should take 1 white chalk and then include epsilon brown chalk.

  • @spitalhelles3380
    @spitalhelles3380 2 роки тому

    I have programmed a little application that calculates transit times for a subway system. It uses variables, the squares of which equal zero.

  • @solcharms
    @solcharms Рік тому +1

    This construction is isomorphic to the quotient of the polynomial ring in one variable (say, x) over the reals, modded by the ideal generated by x^2. i.e. the quotient ring R[x] / (x^2).
    Such elements can be written as the representative of their class (a + bx) for some real numbers a,b, and multiplication is defined in the same way as for dual numbers with instead x^2 = 0.

    • @radderek007
      @radderek007 Рік тому

      I don’t quite understand this math. ‘i I use and understand, duel numbers cool. You’re recent and look like you know what your talking about so 👍.

  • @chaboii
    @chaboii 2 роки тому

    !!
    What an underated piece of math. Very very cool.

  • @annaarkless5822
    @annaarkless5822 2 роки тому

    i love the brown chalk cuz brown is one of my favourite colours but youre probably right that it's not the best for writing
    maybe good for doodling a poop under some problem you cant figure out tho

  • @nathanbraswell2484
    @nathanbraswell2484 2 роки тому +2

    Im a few months late to the party, but considering how much people are talking about how this resembles infinitesimals (and can be used in place of them), its worth noting that its entirely well founded to use the dual numbers as infinitesimals. In Nonstandard Analysis, acknowledging the possibility of infinitesimals allows for a complete foundation of calculus without ever using epsilons or deltas. Instead of proving things to be true given any size of epsilon, using a symbol dx=epsilon=lim_{h->0} h allows for using Hyperreal numbers (where theres |R| numbers between any 2 real numbers). Robinson proved that this was perfectly consistent, and there have even been undergraduate calc textbooks that try and use these constructions to teach a standard Calc 1-2 sequence. Automatic differentiation/f(x+e)=f(x)+ef'(x) as shown in the video can be thought of as a Newton approximation with an input so small its perfectly accurate. Another really cool thing about these nonstandard analysis treatment of the Hyperreals as duals is that it shows that unlike with the imaginary numbers, the duals are an ordered field.
    If youre curious about seeing dual numbers/Hyperreals as a foundation for Analysis, Jerome Keisler's "Elementary Calculus: an Infinitesimal Approach" is available free online, from Keisler himself.

    • @happmacdonald
      @happmacdonald Рік тому

      I'm curious (in advance of checking out `Elementary Calculus: an Infinitesimal Approach`), does this approach simply involve treating the ε basis of dual numbers as congruent to the ε infinitesimal of Hyperreal?
      I ask because I'm not accustomed to thinking of Hyperreal `ε` as nilpotent. I'm instead accustomed to thinking of ε² = 1/(ω²), and +ε/+ε = +1 and things like that.

  • @cmilkau
    @cmilkau Рік тому

    Oh that's quite a powerful application! Nice!

  • @makethisgowhoosh
    @makethisgowhoosh Рік тому

    Dude, totally down with the brown chalk for boxes

  • @driesvanoosten4417
    @driesvanoosten4417 Рік тому

    Grassman numbers are very useful in quantum field theories describing fermionic particles.

  • @Green_Eclipse
    @Green_Eclipse Рік тому

    Wow. That's really cool! You can even use this to find formulas for the product rule, quotient rule and even chain rule very simply. (Not a proof, but very neat)