Mechanical Engineering: Centroids in 3-D (1 of 19) Semi-Sphere

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ • 51

  • @memr8814
    @memr8814 3 роки тому +6

    explain so clear that I can understand using 1.5x speed, thx!

  • @nurain8926
    @nurain8926 4 роки тому +1

    This helped me a lot.May GOD bless u sir

    • @MichelvanBiezen
      @MichelvanBiezen  4 роки тому +1

      We are glad these videos are helpful, and yes God has blessed us. May He bless you and your family as well.

  • @slee63streams89
    @slee63streams89 9 місяців тому +1

    Where did the dx go from the bottom portion of the equation? if dV = (pi)r^2 dx and you replace the dV on both the top and bottom, where did the dV go on the bottom?

    • @MichelvanBiezen
      @MichelvanBiezen  9 місяців тому +1

      We replaced the integral in the denominator with the actual volume (since that is what the integral would have given us anyway).

  • @OnlineToBrain
    @OnlineToBrain 8 років тому +6

    Sir please make camera in side when you write on board because by live writing demonstration it will easy to learn.

  • @None0fY0urConcern
    @None0fY0urConcern 9 місяців тому +1

    since the strip we are cutting is vertical shouldnt it be Ydv?????

    • @MichelvanBiezen
      @MichelvanBiezen  9 місяців тому +1

      It does appear to be "counter intuitive", but we are following the strict definition of the centroid and thus it is giving us the correct answer.. (In the y-direction th center of mass is at y = 0 because of the symmetry).

  • @The_Green_Man_OAP
    @The_Green_Man_OAP 6 місяців тому

    Call you help me figure something out?
    Okay, what I'm looking for is the center of mass (or "gravity") of a hollow sphere with a spherical cap removed from one side (that is less than a hemisphere in size). Kinda like one one those round wine glasses but without the flat base.
    Also, I want to confirm that I have the correct center of mass of the (hollow bowl-shaped) spherical cap.
    This video is the closest I've seen to what I am looking for.
    I'm trying to use this to prove Newton's shell theorem using an alternative method from triple integrals and so on...
    If you help me, I'll give you all the details of my new proof and you can go ahead and do a video on it if you want.

  • @sujeewa8067
    @sujeewa8067 5 років тому +1

    This helped me thanks a lot for the video sir!

  • @jalilnaibi2644
    @jalilnaibi2644 4 роки тому +1

    When we integrate the denominator dV the answer is something else. Can you explain why?

  • @AbhishekSingh-wv6yl
    @AbhishekSingh-wv6yl 8 років тому +1

    why we're are not taking the z axis and what is the basic way to find center of continuous body I think I must watch that first

    • @AbhishekSingh-wv6yl
      @AbhishekSingh-wv6yl 8 років тому

      by basic way I mean the actual logic to find the center of mass of all bodies if I understand that I will easily understand this video

    • @MichelvanBiezen
      @MichelvanBiezen  8 років тому

      Because of the symmetry, the center of mass in the z-direction is on the axis.

  • @calambuhayjr.josevirgiliog2094
    @calambuhayjr.josevirgiliog2094 3 роки тому +1

    Sir could you explain why the center of mass of a semi circle is 4r/3pi while a semi sphere 3r/8? I can't visualize the difference. Thank you. :)

    • @calambuhayjr.josevirgiliog2094
      @calambuhayjr.josevirgiliog2094 3 роки тому +1

      Is it because the semi circle "with uniform density" looks like a half moon cake?

    • @MichelvanBiezen
      @MichelvanBiezen  3 роки тому +1

      A semi circle will have the same center of mass as a half barrel, same shape at every cross section, but each cross section of a semi sphere is different.

  • @AbhijeetGawas
    @AbhijeetGawas 3 роки тому +2

    Explained very well

  • @mstoqua967
    @mstoqua967 7 років тому +2

    hello from Egypt :) I have a question ... what about if it on the y direction ? i wanna send a photo to show you ^_^ i cannot solve it

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому +5

      Welcome to the channel! Because of the symmetry, the centroid in the Y-direction is on the x-axis. If the object is oriented up instead of sideways, work the problem exactly the same way, but exchange x for y.

  • @VLOREM
    @VLOREM Рік тому

    i want a video for hollow semi sphere

  • @ethicshorts6506
    @ethicshorts6506 6 років тому +1

    It is applicable for segment which is smaller than semisphere?????? Pls reply

    • @MichelvanBiezen
      @MichelvanBiezen  6 років тому +1

      yes. The limits of integration will be different

  • @julianaugust8435
    @julianaugust8435 4 роки тому

    Why integral dV in the denominator is (2/3)Pi R^3.

    • @MichelvanBiezen
      @MichelvanBiezen  4 роки тому +1

      The volume of a sphere = (4/3) pi R^3, so the volume of a half sphere is (1/2) (4/3) pi R^3

  • @muhammadalinomansaeedsaeed4376
    @muhammadalinomansaeedsaeed4376 7 років тому +1

    why we donot write value of the dv in the numenator same as in the denomenator instead of it we write 2/3*pie^3

  • @mehulgupta376
    @mehulgupta376 7 років тому +1

    Why cant we use angle approximation ??

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому

      Did you try it?

    • @mehulgupta376
      @mehulgupta376 7 років тому +1

      Michel van Biezen yes i did but i get the wrong answer...R/2

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому +2

      That is why I recommend you use the technique shown in the video.

    • @parthkasana3029
      @parthkasana3029 7 років тому +2

      But where we wrong in angle approximation

  • @finianholland7654
    @finianholland7654 5 років тому +2

    What is he saying at the beginning of every vid?

    • @MichelvanBiezen
      @MichelvanBiezen  5 років тому +3

      "Welcome to Ilectureonline"

    • @clap_lmao
      @clap_lmao 4 роки тому +1

      and im sitting here thinking he's been saying "welcome to electro-online" for the past year

  • @FGspa-eb9ti
    @FGspa-eb9ti Рік тому +1

    thanks sir

  • @dipender11
    @dipender11 8 років тому

    sir why we didn't include z since it is 3d object

    • @MichelvanBiezen
      @MichelvanBiezen  8 років тому +4

      +dipesh rathi It depends on the integration technique. There are several ways in which you can integrate to find the volume of an object. Because of the symmetry of the object we didn't have to integrate in the z-direction to find the answer.

  • @deepfriends7861
    @deepfriends7861 3 роки тому +1

    Integrate 1 = x?? Why did you write integrate dv = 2/3pie R3??
    But the answer is 2/3pieR3X where is the X sir please explain.. 🖤 🙏

    • @MichelvanBiezen
      @MichelvanBiezen  3 роки тому +1

      The integral in the denominator is equal to the volume of the semi-sphere. (1/2) (4/3) (pi) (R^3)

  • @afnanhegazi9182
    @afnanhegazi9182 2 роки тому +1

    thanks a loot🙏

    • @MichelvanBiezen
      @MichelvanBiezen  2 роки тому +1

      You are welcome. Glad you found our videos. 🙂

  • @celeryystick
    @celeryystick 5 років тому

    Michel Van Biezen for president!!!!!!

  • @rachelkimemia5897
    @rachelkimemia5897 5 років тому

    Thank you so much

  • @ichione732
    @ichione732 2 роки тому +1

    tysssssm

  • @sashamuller9743
    @sashamuller9743 4 роки тому

    please be safe in coranvirus times sir. my prayers are with you