integral of sqrt(x^2+1), with Euler Substitution, math for fun

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 406

  • @tokenup420
    @tokenup420 7 років тому +749

    trigsubs are way easier typically but I may do it this way in my D.E. class just to make my teacher think im smarter lol.

    • @blackpenredpen
      @blackpenredpen  7 років тому +138

      that works!

    • @holyshit922
      @holyshit922 7 років тому +21

      Here after Euler's substitution and some linear properties you will get integal of power function
      To see that not always trig subsittutions are faster calculate integral
      Int(\frac{dx}{x^2(4x^2-3)^2\sqrt{x^2-1}}) or
      Int(\frac{dx}{x\sqrt{2x^2-2x+1}})
      If we use first Euler substitution for integral Int(\frac{dx}{x^2(4x^2-3)^2\sqrt{x^2-1}}) we will get integral which can be
      easily calculated mentally but if we use third substitution (with the roots) we should use Ostrogradsky method for isolating rational part of integral and calculate twelve coefficients
      If you still want trig substitutions you need three substitutions (actually two of them are inverse trig substitution)

    • @holyshit922
      @holyshit922 6 років тому +4

      Yeah is there someting easier then power rule and linearity of an integral , because it we will get after Euler substitution in this integral

    • @Linus-ex3xs
      @Linus-ex3xs 6 років тому +2

      Jacek Soplica you do LaTeX right?

    • @BY-sh6gt
      @BY-sh6gt 5 років тому +3

      I use multiple u-subs on the exam and got the exact same answer... but that's too much subs and after i submitted my answer i just realised that trig-sub 'exists' 😂

  • @swedishmathtutor6104
    @swedishmathtutor6104 7 років тому +173

    And all of you hating and saying why don't you do trig sub. This is the beauty of math. 1. Two different methods arrive at the same solution and 2. There exists a much more elegant approach. Now imagine this was the way you were taught and someone showed you trig sub. What would you say?

    • @marcushendriksen8415
      @marcushendriksen8415 5 років тому +14

      "That's pretty awesome!" (but then again, I do appreciate the fact that there are multiple ways to skin mathematical cats)

    • @arjavgarg5801
      @arjavgarg5801 5 років тому +12

      Swedish Math Tutor I would say, why didn’t you tell me this first?

    • @peorakef
      @peorakef 3 роки тому

      id say: you cheater!

    • @SimsHacks
      @SimsHacks 2 роки тому +2

      Also, this sub works always, not the case with trig sub, where you have troubles with domain if you put x=tan(theta) for example.

  • @g0rgth3b0rg
    @g0rgth3b0rg 7 років тому +93

    Rewriting (1/t^2 - t^2) as a difference of two squares, then multiplying top and bottom of the fraction by the conjugate, only to create a difference of two square conjugates is beautiful and amazingly clever.

    • @blackpenredpen
      @blackpenredpen  7 років тому +13

      Greg Brown thank you!!!!

    • @allaincumming6313
      @allaincumming6313 5 років тому +1

      Sí, se soltó la greña lmL

    • @ekxo1126
      @ekxo1126 3 роки тому +2

      @@allaincumming6313 "Yes, the lmL hair was released" thanks google translate

    • @farazriyaz9078
      @farazriyaz9078 3 роки тому

      @@ekxo1126 I wonder where can I buy the rumored lmL hair...

    • @otromenfeick9382
      @otromenfeick9382 2 роки тому +1

      @@ekxo1126 I'm a native spanish speaker, that's indeed what it means. The commentary itself is what doesn't make sense lol

  • @mohan153doshi
    @mohan153doshi 7 років тому +111

    This Euler's sub method of solving this rather simple integral was really fascinating and I just loved the algebra involved here. The ugly radicals just vanish like pure magic. Who said that Math is not magic? You just proved that math can be magical and beautiful. Thanks for this awesome substitution. It can make anyone's day (anyone who likes math) beautiful. In a parallel universe, I hope I come across a math teacher like you in real life instead of the virtual interaction here. I would surely feel blessed then.

  • @toopytoopy8547
    @toopytoopy8547 5 років тому +20

    *Try to subtitute x by the hyperblic sinus : sinh(t)*
    as a remind, sinh(t) = (exp(t)-exp(-t))/2 ; cosh(t) = (exp(t)+exp(-t))/2 ; sinh'(t)= cosh(t)
    then if x = sinh(t) , we have t=ln(x+sqrt(1+x²)) _(easy to obtain in two lines!)_
    So, *1+x² = 1+sinh(t)² = cosh(t)²* and *dx= cosh(t) dt*
    let's note int(f(x)dx ,0 ,a ) the integral of a function f(x) between 0 and a
    then int(sqrt(1+x²) dx ,0,a) = int( cosh(t)² dt, 0, ln(a+sqrt(1+a²))
    *## i will note b := ln(a+sqrt(1+a²) which means that sinh(b) = a##*
    But we have cosh(t)² = (exp(2t)+exp(-2t)+2) / 4
    so int( cosh(t)² dt, 0, b) = [exp(2t)/8 - exp(-2t) /8 + t/2] # between 0 and b
    = exp(2b)/8 - exp(-2b)/8 +b/2
    Moreover exp(2b)-exp(-2b) = (exp(b)+exp(-b)) (exp(b)-exp(-b)) = 4 sinh(b) cosh(b) and we know that cosh(b) = sqrt(1+sinh(b)²)
    then int( cosh(t)² dt, 0, b) = ( sinh(b) . sqrt(1+sinh(b)²) ) /2 + b/2 .
    As we have a = sinh(b) then : int( cosh(t)² dt, 0, b) = (a . sqrt(1+a²))/2 + ln(a+sqrt(1+a²))/2
    Which means that the integral function of sqrt(1+x²) is *(x sqrt(1+x²))/2 + ln(x+sqrt(1+x²))/2* AS FOUND IN THE VIDEO
    Notice that if you deal well with hyberbolic trigonometry this way of calculating the integral is faster and easier !!

    • @allaincumming6313
      @allaincumming6313 5 років тому +2

      In this case: Hyperbolic sub>Trig sub>Euler sub

    • @samevanovitch3362
      @samevanovitch3362 4 роки тому +1

      You are amazing and I was wondering why he didn't use the change X = SINH(t)

    • @최문규-o4d
      @최문규-o4d 4 роки тому +1

      Wow U are genius

    • @Rosie6857
      @Rosie6857 4 роки тому +1

      Another substitution that works is x = tan t

    • @peamutbubber
      @peamutbubber Рік тому

      Nah tany = x is way faster

  • @neomooooo
    @neomooooo 4 роки тому +19

    Excellent video! I prefer x=sinh(t). Hyperbolic trig sub is an elegant approach, and is a middle ground between Eulers trick, and classic trig sub.

  • @marvalmej007
    @marvalmej007 Рік тому +1

    Genuinely nice explanation! This is amazing.
    Math is beautiful and magic, you are an amazing magician. Kudos!!

  • @sandile13809
    @sandile13809 5 років тому +15

    This made me appreciate trig sub

    • @johngreen3543
      @johngreen3543 2 роки тому

      Trig subs can be avoided in many cases. Particularly with radical expressions with x2 - 1, x^2 +1 and 1-x^2 in the radicand. Do not use trig for them

  • @lebgdu17pktudorpa23
    @lebgdu17pktudorpa23 5 років тому +13

    Little note : 1-t^2 / 2t , is actually the formula (when you let t=tan(theta) ) for 1/tan(2*theta) . This method thus shares a relation with trig sub anyway :)
    Very nice video!

  • @complex314i
    @complex314i 5 років тому +2

    t^-2-t^2 = (t^-1-t)(t^-1+t) = 2x(t^-1+t) = 2x(t^-1-t+2t) = 2x(2x+2t) = 4x(x+t) = 4x(x^21)^(1/2)
    Easier to do difference of squares while still in t.

  • @anoopkumar-dt7wp
    @anoopkumar-dt7wp 6 років тому +10

    We had a sir who taught it like this
    x/2(question)+constant/2(integral of reciprocal of question)

  • @zahari20
    @zahari20 Рік тому

    The best way to solve this integral is by setting x = sinh(t). Then we have Integral (cosh(t)^2 dt and here cosh(t)^2 = 1/2(1 + cosh(2t)) etc.

  • @diamonddave2622
    @diamonddave2622 7 років тому +78

    looks like we are now black pen, red pen and blue pen!

    • @blackpenredpen
      @blackpenredpen  7 років тому +16

      Diamond Dave yup!

    • @papajack2205
      @papajack2205 7 років тому +10

      Diamond Dave there was already a video with a green pen included. I guess crazy things are going on these days..

    • @AlgyCuber
      @AlgyCuber 6 років тому +2

      purple pen too

    • @slippygames3519
      @slippygames3519 4 роки тому +1

      @@AlgyCuber blackpenredpenbluepengreenpenpurplepen

    • @ellyvatedaf
      @ellyvatedaf 3 роки тому

      @@slippygames3519 RGB pen

  • @DougCube
    @DougCube 7 років тому +6

    Two minor issues... 1) You never justify swapping the order of the absolute-value and -1 power at 17:12. 2) At 19:38, the reason why the inside is positive and you can drop the absolute-value is not complete. If you have (A+B) and A > B, you cannot conclude (A+B) > 0. Counterexample: A=1, B=-2. (The missing reason is that if x is negative, the A portion is greater than -x to get the sum to be positive.)

    • @antimatter2376
      @antimatter2376 6 років тому +5

      1st the reason he can brirng the -1 to the t as a power is because of a ln property. 2nd it's different because you square x and add 1 inside a square root and subtract x. if you just have sqrt(x^2)-x then it's zero. But instead we have the +1 so sqrt(x^2+1)-x is always positive. You're example doesn't consider the square and sqrt.

  • @ahmeddamour3661
    @ahmeddamour3661 Рік тому +2

    Chapeau ! 😊
    On peut aussi faire X = Tan (téta) ... par la substitution trigonométrique.

  • @khiariyoussef6674
    @khiariyoussef6674 7 років тому +4

    nice !you can also : sub x with tan(u) then you integrate by parts : 1/cos^3(x) !

    • @blackpenredpen
      @blackpenredpen  7 років тому +7

      Yup! That's trig sub!

    • @fgdhlololo1887
      @fgdhlololo1887 7 років тому

      khiari youssef no parts needed...

    • @nickharland6473
      @nickharland6473 5 років тому

      @@fgdhlololo1887 parts is usually used to compute the integral of 1/cos^3(x)

    • @daisyypoon
      @daisyypoon 5 років тому

      Then seems to be way easier.

  • @OverCookedRice
    @OverCookedRice 3 роки тому +1

    When you trying to find the easiest way to integrate a problem and you found this guy who makes it harder. I know how to solve this problem and after I watched this video I dont know how to start anymore.

    • @maalikserebryakov
      @maalikserebryakov Рік тому +1

      😂😂😂😂😂😂😂 LMAO

    • @maalikserebryakov
      @maalikserebryakov Рік тому +1

      sounds like you have trouble organising your knowledge on integral calculus.
      This is something I have given a lot of thought to. Want some help?

    • @OverCookedRice
      @OverCookedRice Рік тому

      @@maalikserebryakov Hi, thanks for your offer. I’m just joking. I’ve passed the class and moved on for a while. Something I will never look back :)

  • @johngreen3543
    @johngreen3543 3 роки тому +1

    The best method is not either trig sub or euler sub. The best method is integration by parts. Let u =(x^2+1)^1/2 and dv = dx. then a little add and subtract will give the original integral plus a familiar integral.
    Give it a try.

  • @ezeldintayel6247
    @ezeldintayel6247 Рік тому

    I did the integral by using )complex substitution where I put x =isin(theta) and it worked!!

  • @MarkPaul1316
    @MarkPaul1316 2 роки тому +1

    very interesting this substitution for the calculation of this integral. had solved this integral by trigonometric substitution x = tgO.

  • @bmrm2004
    @bmrm2004 7 років тому +19

    easier way: just replace x with sinh (t)

    • @nejlaakyuz4025
      @nejlaakyuz4025 5 років тому +6

      Or tan(t)

    • @1_adityasingh
      @1_adityasingh 4 роки тому

      @@nejlaakyuz4025 then you have to integrate sec (x)

    • @me_hanics
      @me_hanics 4 роки тому +3

      @@1_adityasingh integrate of secant is "known", this channel has a video on it

    • @tikz.-3738
      @tikz.-3738 4 роки тому +1

      @@me_hanics it's ln(tan(X)+sec(X)) it's a pretty standard integral should be remembered probably

    • @digroot
      @digroot 4 роки тому

      If x^2 + 2 then your method might not work if you sub sinh(x), Euler method seems to be working in x^2 + a, maybe x^3 + a, not sure yet

  • @gloystar
    @gloystar 6 років тому +1

    Ohh! Thank you so much for this video that answered my question. Good job bro, keep it up!

  • @mireksoja9063
    @mireksoja9063 7 років тому +2

    I like the video. Good job. Sometimes you could be too fast but it's fine because I can stop video for one or two seconds. Reminds me my old good times when I was a student. :)

    • @blackpenredpen
      @blackpenredpen  7 років тому +2

      Mirek Soja thank you. Yea pause the video whenever you need to. Hopefully overall is good.

    • @holyshit922
      @holyshit922 6 років тому

      I think he chose wrong example
      If he had chosen Int(sqrt(x^2-1),x) as an example he would have shown two Euler substitutions
      which cover all integrals in the form \int R(x,\sqrt{ax^2+bx+c})dx
      Substitution with leading coefficient he showed but substitution with the roots is missing
      If the purpose of this video is calculating this integral then video is ok
      If the purpose of this video is to show another substitution which is less known in US
      then video is not finished

    • @RubenHogenhout
      @RubenHogenhout 6 років тому

      This is much more interesting because if you have the equation of the circel Y^2 + X^2 = r^2 then as you write it as a function
      f(x) = (r^2 -x^2)^(1/2) you can intregrate the Circel if you calculate the intergral.

  • @johnmahoney5805
    @johnmahoney5805 6 років тому +1

    Never thought I'd say that I'd prefer to do trigonometric substitution, but here we are.

    • @maalikserebryakov
      @maalikserebryakov 2 роки тому

      Trig sub is not useful when there are many other terms apart from the radical
      This method works always to simplify the integrand

  • @nadiralishah6889
    @nadiralishah6889 4 роки тому

    How good you are changing the markers in the hand.

  • @joseantoniogonzalezgarcia3518
    @joseantoniogonzalezgarcia3518 5 років тому +2

    Muy bien, ese cambio de Euler. Otra forma más de para completar la derivada ¡ Le felicito !

  • @shadowstryder0
    @shadowstryder0 7 років тому +2

    excellent job! this was a beautiful integration.

  • @NonTwinBrothers
    @NonTwinBrothers 2 роки тому

    Every time I see Euler in the title I'm like "Daaaamn he EVEN has a substitution????"

  • @swedishmathtutor6104
    @swedishmathtutor6104 7 років тому +9

    Never seen that method! Very interesting. Would like to see the idea behind it

    • @dalisabe62
      @dalisabe62 4 роки тому +5

      The idea behind it is the assumption that there exists a linear equivalent for any nonlinear one with the incorporation of another variable in the addition format (if you multiply t by x, you only make it more complicated) The question is: under what circumstances this Euler method is more efficient that simple trig substitution? Euler is well-known for creating such equivalence. Consider the famous Euler formula in the complex plane which maps a complex exponential to a complex trigonometric form. That formula was built on the same pattern of logic. Because integration is such an art, transformations are central to finding anti-derivative of complicated integrands.

  • @holyshit922
    @holyshit922 6 років тому

    In polish and russian schools
    Euler's substitutions was standard ones
    f.e can be found in russian textbook
    Курс дифференциального и интегрального исчисления Григо́рий Миха́йлович Фихтенго́льц
    with short geometric interpretation

  • @SimsHacks
    @SimsHacks 3 роки тому

    We learn it since it is universal. Trig sub doesn't always work if you have other things apart the sqrt in the integral.

  • @lemonlimeGOD
    @lemonlimeGOD 7 років тому +2

    Wow, you were right. That WAS really cool!

    • @blackpenredpen
      @blackpenredpen  7 років тому

      Alex Behlen I am glad that you like it!!!

  • @rounakagarwal5136
    @rounakagarwal5136 2 роки тому

    You made this super easy sums look complicated and tough

  • @AshishSingh-753
    @AshishSingh-753 4 роки тому

    Hey buddy your are a best mathematics teacher

  • @chazzaca
    @chazzaca 4 роки тому

    At 17:00 I would have just put in t=sqrt(x^2+1) - x and be done with it!! Other than that great video and thanks for showing us that Euler rules!! :-)

  • @isobar5857
    @isobar5857 5 років тому

    Geez...you have the patience of a saint!

  • @raduvasilache6804
    @raduvasilache6804 4 роки тому

    easier method: Write sqrt(x^2+1)= (x^2+1)/sqrt(x^2+1). You get a integral that has a simple formula(that ln|x+sqrt(x^2+1)|) and also a integral that you solve using partitions. In final you will get that the double of that integral equals sth you know and it will be that thing/2

  • @giampiproietti
    @giampiproietti 7 років тому

    And that's why the hyperpolic functions exist. You'll get the solution a lot easier with 'em.

  • @Jamelele
    @Jamelele 7 років тому +16

    when do you specifically need to use euler's sub? That'd be interesting :)

    • @blackpenredpen
      @blackpenredpen  7 років тому +20

      It was a question sent by one of my subscribers

    • @maalikserebryakov
      @maalikserebryakov Рік тому

      You can use it whenever there is a specific composition of a quadratic inside a radical
      But when the quadratic contains the x term, trigsub will no longer work. So you will use euler sub then.

  • @Treegrower
    @Treegrower 7 років тому +2

    Very interesting, I've never seen this method before! However, I think I'll stick to trig-sub. This looks hard!

  • @danny1504-g2d
    @danny1504-g2d 10 місяців тому

    Very cool thank you BPRP!

  • @goedelite
    @goedelite 4 роки тому

    The frequency of advertising interruptions for an educational feature is disgraceful. I would remember who the advertisers are - not to buy their products but to avoid them!

  • @박주은-f4x
    @박주은-f4x 3 роки тому

    Thank you so much!! I love this vedio

  • @holyshit922
    @holyshit922 6 років тому

    I think he should show how to get this substitution
    There are at least two ways to get it
    1. Secant line of curve y^2=ax^2+bx+c
    2. Right triangle with sides labeled as in inverse trigonometric substitution

  • @knochiosiedlerfreund255
    @knochiosiedlerfreund255 5 років тому +3

    well done, Steve. You pronounced Euler in the correct way. :)

  • @LucasGabriel-lc9ty
    @LucasGabriel-lc9ty Рік тому +2

    Muito obrigado, acho q agr vou conseguir resolver uma integral q eu tô penando a quase 2,5 semanas com isso que acabo de conhecer (substituição de Euler)

  • @think_logically_
    @think_logically_ 3 роки тому

    Just assume x=sinh(t) (hyperbolic sine: sinh(x)=(e^x-e^-x)/2, hyperbolic cosine: cosh(x) = (e^x+e^-x )/2) . Then dx=cosh(t)dx and sqrt(1+x^2) = cosh(t).
    Fiinita la comedia!

    • @joserubenalcarazmorinigo9540
      @joserubenalcarazmorinigo9540 2 роки тому

      Desde luego que con la sustitución hiperbólica se consigue resolver más rápido esta integral. El solamente está mostrando otro camino para resolverlo. Obviamente también se puede usar la sustitución Trigonométrica. Es interesante, porque a los estudiantes se le debe mostrar todas las posibilidades existentes para posteriormente estar en condiciones de resolver otras integrales.
      NO ES UN CONCURSO DE VELOCIDAD, SINO DE CONOCIMIENTO Y EL SABER NO OCUPA LUGAR

    • @think_logically_
      @think_logically_ 2 роки тому

      @@joserubenalcarazmorinigo9540 Solamente quería mostrar un otro método para obtener la integral, que (para ser honesto) me gusta más. A propósito, las funciones hiperbólicas no son realmente trigonométricas.

  • @DiegoMathemagician
    @DiegoMathemagician 5 років тому +18

    PLEASE FACTOR that 1/2
    thank you :)

  • @ThAlEdison
    @ThAlEdison Рік тому

    hmm if you set x=cot t, then ta
    n (t/2) = w, you get that x=(1-w^2)/2w
    So it's equivalent to doing a trig-sub followed by a Weirstrass substitution. Kinda sorta

  • @carce8450
    @carce8450 7 років тому

    what an amazing channel i just found !

  • @jdratlif
    @jdratlif 7 років тому +2

    This was great. Thanks.

  • @mohamadsharafeddinbabouji8728
    @mohamadsharafeddinbabouji8728 4 роки тому

    I do have one question
    What made you think in the first place that you have to choose x+t instead of only t ??
    Otherwise it was amazing algebra and magic way of thinking ☺

    • @SimsHacks
      @SimsHacks 2 роки тому

      Cause it works. He didn't think of it,it's a well-known sub.

  • @Billy_98
    @Billy_98 7 років тому

    You are awesome ,dude.Thx for this video!!

  • @yassine321
    @yassine321 4 роки тому

    i never knew this method for integration anyway i gain another weapon in my magical pocket
    Thanks bprp !

  • @midou6104
    @midou6104 Рік тому

    just use x = sh(u) ==> dx = ch(u)du ==> integrel(ch²(u) , du )

  • @TheJaguar1983
    @TheJaguar1983 6 років тому

    Damn, that's crazy. No wonder I had so much trouble solving this on my own.

  • @eliteteamkiller319
    @eliteteamkiller319 2 роки тому

    I forgot all about the existence of Euler substitution. Maybe we spent a day on it in class.

  • @vitalchance5768
    @vitalchance5768 3 роки тому

    Should I show a real elegant way of taking this integral? I think the way above is really insane. Just for the audience: it should be done in three simple steps just with one substitution. The way Boris Demidovich was doing it in 1970's.

    • @johngreen3543
      @johngreen3543 2 роки тому

      Demidovich must have come from Eastern European schools as a student in his younger days. Western European instructors seem to rely to heavily on trig sub.

  • @dead53216
    @dead53216 5 років тому

    1/3x(x^2+1)^3/2+C

  • @chathurangasameera6722
    @chathurangasameera6722 Рік тому

    Tnx sir ❤️

  • @bowenchai8474
    @bowenchai8474 4 роки тому

    Maybe Integration by parts is another way that can solve in a more faster way,because in the process ,add 1 and minus 1 could make a difference.

  • @HarunOrRashid-pp5ju
    @HarunOrRashid-pp5ju 6 років тому +1

    Integration of root(x+root x power2+1) solve it sir

  • @zoso25
    @zoso25 5 років тому +1

    While making the initial substitution for X+t, couldn't we just integrate Xdx and tdx in parts and then substitute dx with the dt form? That would simplify things I guess. We won't need to substitute t with X form for atleast one part. I'm probably not thinking this through and might be overlooking something.

    • @mbulut7
      @mbulut7 3 роки тому

      I was going to say to the publisher, "hey bro, you just missed the beauty of this method: first part is just (x^2)/2, and you do just t*dx part". I said let me first scan through the comments not to repeat the same thing. then I saw your comment. You are damn right, that is the way to do this integration.

    • @holyshit922
      @holyshit922 2 роки тому

      No you should express x and sqrt as a function of t
      and then differentiate x with respect of t

  • @tywarwick
    @tywarwick 4 роки тому +1

    Smart approach but perhaps a little quicker by an 'x = sht' substitution

  • @tastely9704
    @tastely9704 2 роки тому

    Thank you so much!

  • @abdouabdou2647
    @abdouabdou2647 4 роки тому

    Great Mr 👍

  • @theadel8591
    @theadel8591 5 років тому

    This Euler fella his name‘s all over mathematics

  • @azerjabi9419
    @azerjabi9419 6 років тому

    easier to make subst x=tg t or x=ctg t dx =1/cos^^2 (t) dt

  • @chungys3660
    @chungys3660 7 років тому +40

    I can understand this. No wonder I'm alone.

    • @blackpenredpen
      @blackpenredpen  7 років тому +15

      lol

    • @wr9411
      @wr9411 5 років тому

      It’s not hard to understand, it’s just a substitution with lots of algebra

    • @aryanks2167
      @aryanks2167 4 роки тому

      we are with you

  • @doublestarsystem
    @doublestarsystem 5 років тому

    In my opinion, it is more important for students to learn
    mathematical modelisation of real life problems, including variables identification, and finding out the general equation of a a specific problem, then let the computer do what it was built for: Tedious calculations....(I was able to calculate this integral on my smartphone within 10 seconds using a TI-89 emulator)....I still wonder if there is a physical phenomena that obeys this law ?

  • @davidseed2939
    @davidseed2939 4 роки тому

    At 4:05 you could have made things simpler by separating the integral into intgl( x dx) + intgl( t dx)

  • @thomasarch551
    @thomasarch551 2 роки тому

    Love these vids but this is rather hard and convoluted way for a simple integral which reduces to solving /(sec x)^3 dx using
    integration by parts.

  • @TheLcass
    @TheLcass 7 років тому +4

    let X = sinhu => dx/du = coshu => du = 1/coshu dx => s(sqrt(sinh^2u+1)dx) = s(1 du) = u = arcsinhx if my method is correct

    • @LukePhillips1999
      @LukePhillips1999 7 років тому

      Yeah. Arsinh(x) can be expressed in terms of a natural logarithm though which is what you'd usually leave it as.

  • @sonaaila499
    @sonaaila499 4 роки тому

    EXCELLENT VIDÉOS

  • @warrengibson7898
    @warrengibson7898 7 років тому +1

    This stuff is all great fun and good brain exercise but without value in the world of work. Students should understand that no one will offer them money to solve complicated indefinite integrals, just as no one will offer them money to solve crossword puzzles. That said, I applaud Prof. Redblack's teaching style.

    • @Reivivus
      @Reivivus 7 років тому +3

      Why do you think Engineers learn so much mathematics if they never have to solve any complicated indefinite integrals? Your logic does not make sense.
      Trigonometric substitutions are easier, but sometimes there is not an easy defined method to solve a problem, so they need to be solved creatively in more round-about ways.
      When engineers build a bridge, do they eyeball it, or do the mathematics to make sure it can hold the weight of the vehicles? The engineers are liable if anything goes wrong. so they need to crunch numbers first so they don't spend all their time re-stitching their mistakes together.

    • @warrengibson7898
      @warrengibson7898 7 років тому +1

      In my 30+ years as a practicing civil and mechanical engineer, I never once did an indefinite integral. Bridges and other structures are designed using advanced software based on numerical methods that provide approximate solutions to the applicable differential equations. Indefinite integrals, LaPlace transforms, and lots more of the fun stuff we see here are not involved.

    • @notadestinygun6556
      @notadestinygun6556 7 років тому +2

      @warren Gibson its not always about making money, however... if you know how to do these integrals, maybe you can put them on the internet (as such) and make money off it. theres a way to make money doing anything. however my initial point is that the end goal of life is not to make money... but to enjoy life. Newton didn't need money, he simply enjoyed being alone all day and doing this.

  • @voodoo_child01
    @voodoo_child01 7 років тому +2

    You can also solve this really easily by integration by parts, and it also has a shorter answer... please tell me if you want to know the solution.(it involves recursive integrals)

  • @1SaneManiac
    @1SaneManiac 7 років тому +2

    That was a real tour de force right there! Great video!

  • @aryansonthalia9298
    @aryansonthalia9298 5 років тому

    That's really nice.
    Would you give some questions where I can try to use it

  • @otavioluz2809
    @otavioluz2809 2 роки тому

    amazing video tanks!

  • @thejiminator8816
    @thejiminator8816 5 років тому +1

    So, Euler was from planet koozebane

  • @67Radha
    @67Radha 7 років тому +3

    Substituting just sqrt(x^2+1) as t is an easier way to evaluate this integral

  • @brillantstar9308
    @brillantstar9308 2 роки тому

    Thank you so much

  • @mbulut7
    @mbulut7 3 роки тому

    you made a mistake when you substituted for "t". it should be t=sqrt(1+x^2) - x (not t=sqrt(1+x^2) + x ) ; therefore final result has a sign mistake!
    Also you could integrate the first part of the integrand as "(x^2)/2", no need to transfer to "t" space and back to "x" space again, this will make this integral far more easier.

  • @isobar5857
    @isobar5857 Рік тому

    Just one word...wow!

  • @jinilthakkar526
    @jinilthakkar526 7 років тому +1

    You are amazing!!!!!

  • @silentintegrals9104
    @silentintegrals9104 3 роки тому

    nice, solving integrals is allways fun!

  • @luniacllama8373
    @luniacllama8373 5 років тому +6

    It's over complicated we can solve it by parts, infact integral of sqrt(x2+A2) has a standard formula

    • @NailujG
      @NailujG 4 роки тому +4

      Did you miss the point of the video lol

  • @mohammadelsayed5715
    @mohammadelsayed5715 5 років тому

    Keep going, you’re awesome 🌹

  • @IzayoiMeiHigu
    @IzayoiMeiHigu 7 років тому +2

    can you make a video demonstrating the Euler substitution???
    I don't want to memorize without understanding why is that possible, but I can't find the demonstration on Wikipedia ... :(

    • @holyshit922
      @holyshit922 7 років тому

      Говоришь по русский ?
      Hablas espanol ?
      They have recorded video about Euler's substitutions

    • @IzayoiMeiHigu
      @IzayoiMeiHigu 7 років тому

      si hablo español, como lo notaste? :O

    • @holyshit922
      @holyshit922 7 років тому +1

      Sprichst du deutsch ?
      I found Euler's algebra book in which is rationalization of square root of quadratic
      The guy whose video i had watched changed state of his videos to private
      but russian is even better because you have video on youtube and also quite good book
      Курс дифференциального и интегрального исчисления Фихтенгольц Г М
      Euler's book
      Leonheardi Euleri opera omnia
      www.math.uni-bielefeld.de/~sieben/Euler_Algebra.ocr.pdf
      page 349

    • @IzayoiMeiHigu
      @IzayoiMeiHigu 7 років тому

      thanks :D

    • @holyshit922
      @holyshit922 7 років тому

      Watch also separation of rational part of the integral of rational function
      (Ostrogradsky method of undetermined coeffincients ) because it can be useful after Euler substitution
      Your analysis of Euler substitution start with cutting curve y^2=ax^2+bx+c with secant line

  • @Kerbaro
    @Kerbaro 7 років тому

    What can't you do it like this?:
    Integral of (x^2 + 1)^1/2 = (2/3) (x^2 +1)^3/2 * 1/2x

  • @janderson2709
    @janderson2709 7 років тому +8

    Why does the initial equation equal X+t?

    • @JoshuaHillerup
      @JoshuaHillerup 7 років тому +7

      Jacob Anderson he just declared it is. You're allowed to do that when you are defining a new variable t.

    • @erinasama4976
      @erinasama4976 7 років тому +6

      Jacob Anderson because it must be something bigger than x

    • @sherllymentalism4756
      @sherllymentalism4756 5 років тому

      Even negatively bigger 😂

    • @neuralwarp
      @neuralwarp 5 років тому

      The wording would be "select t such that sqrt(x2+1) = x+t".

  • @JoshuaHillerup
    @JoshuaHillerup 7 років тому +4

    Why are you able to assume that X only has real values like that?

    • @marcushendriksen8415
      @marcushendriksen8415 4 роки тому

      Because he's chosen the reals as the domain for this function. He could have extended it to all complex numbers if he'd wanted

  • @agrajyadav2951
    @agrajyadav2951 2 роки тому

    Euler freaking Demi God!

  • @josebarona271
    @josebarona271 7 років тому +3

    My teacher told me i cannot use euler substitution if i dont have the complete ax^2 + bx + c 😣😣😣😣

    • @chazzaca
      @chazzaca 4 роки тому

      Not true - as shown in the video!!

    • @jetblack5941
      @jetblack5941 4 роки тому

      But you do! x^2 + 1 = ax^2 + bx + c where a = 1, b = 0, and c = 1. 😉

  • @nor557utakata9
    @nor557utakata9 5 років тому

    天才やん

  • @akilletaylor6628
    @akilletaylor6628 7 років тому +1

    what level of education is this, it's an important question.

  • @MrOLOY-mj8fi
    @MrOLOY-mj8fi 7 років тому +2

    HI was it possible to simply use x=sh(t) ?

  • @abdulrahmanradwan6167
    @abdulrahmanradwan6167 4 роки тому

    All in all .. thanx

  • @leonardopalozzi620
    @leonardopalozzi620 Рік тому

    Very good!

  • @kurdtube5855
    @kurdtube5855 5 років тому +2

    √ln(X)dx=?
    You will be thanked If you talk me what it does equal to😁