Integral of sqrt(x^2+1), integral of sqrt(x^2-1), integral of sqrt(1-x^2)

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 37

  • @bprpcalculusbasics
    @bprpcalculusbasics  3 роки тому +1

    Watch next: What integration technique do we use?
    ua-cam.com/video/HiXfAayQ_8o/v-deo.html

  • @rogersmith-h2f
    @rogersmith-h2f Рік тому +4

    Gracias hermano me resolviste el examen eres un artista de las matemáticas.

  • @fixtir947
    @fixtir947 Рік тому +1

    thanks, man I seen a lot of videos and I liked how you explained how to come back to the x world the best. I was very confused.

  • @mathunt1130
    @mathunt1130 3 роки тому +16

    I'd be tempted to do a hyperbolic sub in the first integral. It comes out easier.

  • @nostalgiez3429
    @nostalgiez3429 Рік тому +3

    Fastest way to do integals like that is by integration by parts just let initital function to be u ( u = sqrt(x^2 + 1)) for example, you will get answer pretty quick

    • @ocethanol
      @ocethanol 5 місяців тому

      i'm one year late, but can you teach me about this method?
      i just need a solution for your example, that would be great

  • @ChrisRossaroDidatticaDigitale
    @ChrisRossaroDidatticaDigitale 2 роки тому +2

    In the first one I'd use this substitution: x=ch(t); in this way, by using ch^2(t)-sh^2(t)=1 and dx=sh(t)dt, one gets int{sh^2(t)dt}; thus, integrating by part =1/2*{sh[settsh(ch(x))]-settch(x)}+c. Through the hyperbolic goniometric definitions you get the very same result. Thank for the video.

  • @Ragnak_
    @Ragnak_ 3 роки тому +9

    How do I easily remember all the formulas and identities? They're so many to remember, idk if I can keep track of them all

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому +1

    I have a recommendation (or request).
    Please make a video about the *Wallis Product*.
    Thank you

  • @Shahan1980
    @Shahan1980 Рік тому +1

    I can't remember even one problem from higher schoo; or university where we used sec or cosec? I mean I know what it is, but didn't even write the formulas involving those two. sin and cos was always enough? though, ok, fractions might appear, but, from the other point of view trig functions are all about fractions, just meticulously hidden

  • @maakunanashi4508
    @maakunanashi4508 7 місяців тому +1

    May i know if you have vid all manual integrals of those? Coz i think its much easier to know that than memorizing them directly

  • @akashbhatti5141
    @akashbhatti5141 3 роки тому

    Thank you sir

  • @haider1946
    @haider1946 3 роки тому +2

    Question: can I return to the x world while integrating?

  • @charalabosspyrou5057
    @charalabosspyrou5057 Рік тому

    On the second integral shouldn't root tanθ²= |tanθ|??

  • @ahmedwahid8421
    @ahmedwahid8421 2 роки тому

    is the sec function always positive, you must write the absolute value... of sec

  • @izza2319
    @izza2319 2 роки тому

    This helps so much, thank youuu! And also the pokemon ball, so cute😆

  • @Shahan1980
    @Shahan1980 Рік тому

    that's funny how hypotenuse ended up a hypanious (as far as I can hear) LOL

  • @umamaheshwari8877
    @umamaheshwari8877 7 місяців тому

    Easily we can do this by using a formula of integration of square root of x2 + a2 no need to do this process

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 3 роки тому +6

    But I prefer to stay in Disney world then Resorts world !

  • @xihadimran1600
    @xihadimran1600 Рік тому

    Why x=sin theta😰😰??

  • @PriyankaKumari-jn6ej
    @PriyankaKumari-jn6ej Рік тому

    ♥️♥️♥️♥️

  • @MathAdam
    @MathAdam 3 роки тому +6

    First!