Math Olympiad | Can you find area of the square ABCD? |

Поділитися
Вставка
  • Опубліковано 23 січ 2025

КОМЕНТАРІ • 42

  • @wackojacko3962
    @wackojacko3962 11 місяців тому +2

    I absolutely love it! 🙂

    • @PreMath
      @PreMath  11 місяців тому

      Glad to hear that!
      Thanks ❤️

  • @svaypros
    @svaypros 3 місяці тому +1

    Area of the square ABCD=1776cm^2

  • @marcgriselhubert3915
    @marcgriselhubert3915 11 місяців тому +1

    Let's use an adapted orthonormal (as usual !!) and let's note c the length of the square.
    D(0;0) C(c;0) B(c;c) A(0;c) M(c/2;c) VectorDM(c/2;c) is colinear to VectorU(1;2) and orthogonal to VectorV(-2;1)
    VectorV is directing (ME), which equation is: (x - c/2).(1) - (y -c).(-2) = 0 or x +2.y -(5/2).c = 0 Tne intersection of (ME) with (BC), which equation is x = c, gives point E =(c, (3/4).c). Now we have VectorME(c - c/2; (3/4).c - c) or VectorME(c/2;-c/4), giving ME^2 = (c^2)/4 + (c^2)/16 = (5/16).(c^2), and ME = (sqrt(5)/4).c
    We also have VectorDM(c/2;c), so DM^2 = (c^2)/4 + (c^2) = (5/4).(c^2) and DM = (sqrt(5)/2).C
    The area of the green triangle DEM is (1/2).DM.ME = (1/2). ((sqrt(5)/2).c). ((sqrt(5)/4).c) = (5/16).(c^2). Or it is 555, so we have c^2 = (16/5).555 = 1776 which is the area of the square.

  • @phungpham1725
    @phungpham1725 11 місяців тому +3

    The triangles AMD and DME are similar and the ratio of the relevant sides is 2/sqrt5
    so the area of AMD/ area of DME =4/5 ----> Area of AMD= (555x4)/5= 111x4
    Area of the square= 4x111x4= 1776 sq units

    • @PreMath
      @PreMath  11 місяців тому

      Excellent!
      Thanks ❤️

    • @hongningsuen1348
      @hongningsuen1348 11 місяців тому +1

      Your conclusion that triangles AMD (to be correct should be DAM) and DME are similar is wonderful. No explanation is given in your edited comment. I would like to try to give an explanation.
      Angle ADM = angle BME from the given picture. Let it by A.
      For triangles DAM & DME, DM = DA/cosA, ME = MB/cos = AM/cosA (MB=AM as given). With the inclusive right angle, similarity test of 2 sides proportional with inclusive angle is satisfied.

    • @phungpham1725
      @phungpham1725 11 місяців тому

      @@hongningsuen1348 it is very simple:
      Notice that hypotenuse of the triangle AMD= long leg of the triangle DEM
      It is the same with the relevant hypotenuse vs short leg.
      So, the 2 triangles are similar with the ratio of the relevant side=2/sqrt5

  • @villapandogiulliana
    @villapandogiulliana 11 місяців тому +2

    this is absolutely helpful! thanks :))!!

    • @PreMath
      @PreMath  11 місяців тому

      Glad it was helpful!
      You are very welcome!
      Thanks ❤️

  • @waheisel
    @waheisel 11 місяців тому

    Thanks for the fun math puzzle. You don't need Pythagoras; the three triangle areas are x^2, x^2/4 and 3x^2/2 add them to 555. they equal the square area 4x^2. solve for x.

  • @NahidMiah-e6m
    @NahidMiah-e6m 11 місяців тому +2

    Give us lots of video aboutn Olymlaid math ❤❤you Professor.

    • @PreMath
      @PreMath  11 місяців тому

      Keep watching!
      Thanks ❤️

  • @jamestalbott4499
    @jamestalbott4499 11 місяців тому

    Thank you! 📐

  • @tombufford136
    @tombufford136 11 місяців тому

    At a quick glance: MD^2=5*x^2 where AM=x. Triangles AMD,MBE,ECD and MED are similar MB= 0.5 * AD then BE = 0.5* MB= 0.5*x and EC = 3/4*x. Area of AMD= x^2. Area of MBE= 0.25*x^2 and area DEC = 3/4*x^2. ME^2= x^2+ 0.25*x^2= 5/4*x^2. ME= sqrt(5/4)*x and MD = sqrt(5)*x. Using triangle area formula , 0.5* sqrt(5)*x * sqrt(5/4)*x =555 then x^2=2*555/(5*sqrt(1/4)) , .x=21. Area of Square = 4*x^2 1776 cm^2.

  • @shahabvz1643
    @shahabvz1643 11 місяців тому

    بسیار عالی‌

  • @himo3485
    @himo3485 11 місяців тому +1

    ADM♾️BME
    ADM=4s BME=s CDE=6s
    square ABCD=ADM*4=4s*4=16s
    MDE=16s-(4s+6s+s)=5s=555
    s=111
    area of square ABCM : 16*111=1776cm^2

    • @phungpham1725
      @phungpham1725 11 місяців тому

      Very clever! I suggest labeling 4 s as the side of the square. By doing so, [AMD]= 4sq s, [BME]= sq s. and [CDF]= 6 sqs-----> [MDE]=5 sq s. It is easier to understand your idea. Thank you so much!

  • @santiagoarosam430
    @santiagoarosam430 11 місяців тому

    También se puede encontrar la solución sin calcular el valor de AB.-
    N es el punto medio de DE y O el punto medio de EC. P es la proyección ortogonal de E sobre MN.
    La razón de semejanza entre los triángulos EBM y MAD es s=1/2 ; longitudes relativas: AD=4; AM=MB=2; BE=1=2/2; EO=OC=3/2;
    MN divide a EMD en dos mitades de igual superficie, 555/2; MBON=2*MEN=555; PEON=555*3/5=333 ;
    Área ABCD =2(MBON+PEON) =2(555+333)=1776.
    Interesante acertijo. Gracias y saludos cordiales.

  • @DB-lg5sq
    @DB-lg5sq 11 місяців тому

    شكرا لكم على المجهودات
    يمكن استعمال
    tanADM = 1/2
    tanBME=1/2
    BE=x/2
    CE= 3x/2
    (2x)^2=مجموع مساحات المثلثات
    داخل ABCD
    نجد الحل 1776

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 11 місяців тому +1

    Let's name the Length of the Square, 4a. So, the Area of the Square is A = 16a^2.
    1) Triangle [ADM] = (4a * 2a) / 2 = 8a^2 / 2 = 4a^2
    2) Triangle [BEM] = (2a * a) / 2 = 2a^2 / 2 = a^2
    3) Triangle [CDE] =(3a * 4a) / 2 = 12a^2 / 2 = 6a^2
    Now:
    16a^2 = 555 + 4a^2 + a^2 + 6a^2
    16a^2 = 555 + 11a^2
    16a^2 - 11a^2 = 555
    5a^2 = 555
    a^2 = 555 / 5
    a^2 = 111
    If: a^2 = 111
    Then: 16 * a^2 = 16 * 111
    Conclusion: A = 16 * 111 sq cm = 1776 sq cm
    Answer:
    The Area of the Square (wich is a Symbol of Free Masonry - 6 Squares = 1 Cube = House), is the same as the year of the Constitution of the United States of America; 1.776 (4 of July).
    P.S. - Quite interesting!!

  • @MrPaulc222
    @MrPaulc222 11 місяців тому

    Call the square's sides each 2x, as it might help to minimise fractions.
    It looks like this might one of those where you compare similar triangles.
    AMD is similar to DME, and I think EBM qualifies too.
    AMD is one quarter of the square and is and is (2x*x)/2, so x^2
    I think EBM is similar, so that would have an area of (x*(1/2)x)/2 (so much for avoiding fractions :) ).
    That would be an area of (1/4)x^2
    DCE (definitely NOT similar) has an area of ((2x*(3/2)x)/2 which is (3/2)x^2.
    This gives a total are for the square of
    x^2 + (1/4)x^2 + (3/2)x^2 + 555
    x^2 + (1/4)x^2 + (3/2)x^2 + 555 = 4x^2
    x^2 + (1/4)x^2 + (3/2)x^2 = (11/4)x^2
    Therefore, 555 = (5/4)x^2
    As (5/4)x^2 = 555, (11/4)x^2 = 1221 (this is calculated as 111 times the numerator).
    Area of square is 1221+555=1776 sq units.
    This solution turned out to be very unlike what I was expecting, and it does depend on me being correct about the triangle similarities.
    Now to watch the video.
    We took slightly different paths, and I saw ways of simplifying as I went.
    I could not have done these a year or so ago without your tuition so, once again, thank you.

  • @adept7474
    @adept7474 11 місяців тому

    MH ⟂ DE. AMD = MDH, BME = HME. AMD + BME = DME = 1/4 + 1/16 = 5/16 = 555.
    S(ABCD) = 16/5 × 555 = 1776.

  • @quigonkenny
    @quigonkenny 8 місяців тому

    If ∠ADM = α and ∠DMA = β, where β = 90°- α, thwn as ∠EMD = 90°, ∠BME = α, which means ∠MEB = β and ∆EBM and ∆MAD are similar. Let s be the side length of the square.
    Triangle ∆MAD:
    MA² + AD² = DM²
    (s/2)² + s² = DM²
    s²/4 + s² = DM²
    DM² = 5s²/4
    DM = √(5s²/4) = √5s/2
    ME/BM = DM/AD
    ME/(s/2) = (√5s/2)/s
    ME(s) = (s/2)(√5s/2) = √5s²/4
    ME = (√5s²/4)/s = √5s/4
    Triangle ∆EMD:
    A = bh/2 = MD(EM)/2
    555 = (√5s/2)(√5s/4)/2
    555 = 5s²/16
    s² = 555(16/5) = 1776
    Square ABCD:
    A = s² = 1776 cm²

  • @prossvay8744
    @prossvay8744 11 місяців тому +2

    Area of the square ABCD=(4√111)^2=1776 cm^2.❤❤❤ Thakns

    • @PreMath
      @PreMath  11 місяців тому

      Excellent!
      You are very welcome!
      Thanks ❤️

  • @Techwatchesss
    @Techwatchesss 11 місяців тому

    Solve this question
    Square ABCD has area 100
    E is mid point of AB and F is midpoint of BC. AF and DE meet at G . Find the area of triangle DFG .

  • @alster724
    @alster724 11 місяців тому

    That was easy

  • @ChuzzleFriends
    @ChuzzleFriends 11 місяців тому

    Label AM = x. Then, by definition of midpoint, BM = x.
    Therefore, AB = AD = BC = CD = 2x by definition of a square.
    A = s²
    = (2x)²
    = 4x²
    So, square ABCD has an area of 4x² cm².
    Let α & β be the measures of complementary angles.
    Let m∠ADM = α. Then, because ∠A is a right angle by definition of squares, m∠AMD = β.
    Since ∠DME is a right angle, m∠BME = α.
    And ∠B is also a right angle by definition of squares, so m∠BEM = β.
    Thus, △ADM ~ △BME by AAA Similarity. There will be a proportion. Label BE = y.
    AM/AD = BE/BM
    x/2x = y/x
    1/2 = y/x
    y = x/2
    Therefore, BE = x/2 cm.
    Apply the Pythagorean Theorem twice.
    a² + b² = c²
    x² + (x/2)² = (EM)²
    x² + x²/4 = (EM)²
    (EM)² = 5x²/4
    EM = √(5x²/4)
    = (x√5)/2
    (2x)² + x² = (DM)²
    4x² + x² = (DM)²
    (DM)² = 5x²
    DM = √(5x²)
    = x√5
    A = 1/2 * b * h
    555 = 1/2 * x√5 * (x√5)/2
    = (x√5)/2 * (x√5)/2
    = 5x²/4
    2220 = 5x²
    444 = x²
    x = √444
    = √(2 * 2 * 3 * 37)
    = 2√111
    So, x = 2√111 cm. Input into the square area formula.
    A = 4x²
    = 4(2√111)²
    = 4 * 444
    = 1776
    So, the area of square ABCD is 1776 square centimeters.

    • @ChuzzleFriends
      @ChuzzleFriends 11 місяців тому

      BTW, the _first sentence_ in the description is from a previous video. There is no golden shaded square, nor are there isosceles triangles. Just thought I'd point it out.

  • @EPaozi
    @EPaozi 11 місяців тому

    x est le coté du carré X =x^2 X-(X/4+X/16+X.3/8) = 555 X=1766 😀

  • @templarroystonofvasey
    @templarroystonofvasey 11 місяців тому +1

    This would make a nice puzzle for Americans on Independence Day.

    • @PreMath
      @PreMath  11 місяців тому

      Right on!
      Glad to hear that!
      Thanks ❤️

  • @축복이-x6u
    @축복이-x6u 11 місяців тому

    asnwer=1500cm isit

  • @militarymatters685
    @militarymatters685 11 місяців тому +1

    1776

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @JSSTyger
    @JSSTyger 11 місяців тому

    I will say 1776 square units.

  • @ybodoN
    @ybodoN 11 місяців тому +2

    ⊿ADM ~ ⊿BME. AD = 2AM ⇒ MD = 2ME ⇒ ½ ME 2ME = ME² = 555 ⇒ ME = √555 ⇒ BE = √555 / √5 = √111 ⇒ AB = 4√111 ⇒ area □ABCD = (4√111)² = 1776 cm²

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @waheisel
    @waheisel 11 місяців тому

    1776; very patriotic!😊

  • @robertlynch7520
    @robertlynch7520 11 місяців тому

    It looks like we all kind of ended up in the same spot. I set [𝒔 = 2], reflecting the division of the top horizontal into 2 equal halves. [1] each. Then solving the inner green △ was straight forward.
      DM = √(1² ⊕ 2²)
      DM = √5
    Because △AMD is similar to △BME (having same angles), then by proportionality:
      ME = ½DM
      ME = √5/2
    Next in the game of similar parts, need to figure the proportionate area of my re-scaled △DME:
      Area DME = ½ base • height
      Area DME = ½√5 • √5/2
      Area DME = ⁵⁄₄
    Almost done! Since my rescaled □ABCD had [𝒔 = 2], it then had [area = 2² = 4]. The keys to the final solution are in our hands!
    Therefore … the as-shown square which has a △DME area of 555 inside must have a proportionate area, too.
      Area □ABCD = 4 ÷ ⁵⁄₄ × 555
      Area □ABCD = 4 × 4 × 111
      Area □ABCD = 1,776 u²
    Tada. Done. By proportionality scaling.
    ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅
    ⋅-=≡ GoatGuy ✓ ≡=-⋅

  • @yakupbuyankara5903
    @yakupbuyankara5903 11 місяців тому

    1776