Olympiad Mathematics | Can you find area of the Green shaded region? |

Поділитися
Вставка
  • Опубліковано 2 лют 2025

КОМЕНТАРІ • 64

  • @qc1okay
    @qc1okay 11 місяців тому +2

    Just superb. Masterful solution presented masterfully.

    • @PreMath
      @PreMath  11 місяців тому

      Glad you liked it!
      Thanks ❤️

  • @jimlocke9320
    @jimlocke9320 11 місяців тому +4

    Alternatively, to find the area of the blue region, we can construct DH to divide ADGH into 2 triangles, ΔDGH and ΔDAH, and sum their areas. Length DG = side of square DEFG = √(725/4) = √((25)(29)/4) = (5/2)√(29), call that the base of ΔDGH. By corresponding sides of similar triangles, GH is 3/5 as long = (3/5)(5/2)√(29) = (3/2)√(29), call that the height. Area ΔDGH = (1/2)(5/2)(√(29))(3/2)(√(29)) = 435/8. For ΔDAH, length AD = length CD = 25/2, call that the base, and length AH = length AB - length BH = 25/2 - 3 = 19/2, call that the height, so area ΔDAH = (1/2)(25/2)(19/2) = 475/8. Add the triangle areas: 435/8 + 475/8 = 910/8 = 455/4. Deduct from area of square DEFG = 725/4 - 455/4 = 270/4 = 67.5 square units, as PreMath also found.

    • @PreMath
      @PreMath  11 місяців тому

      Excellent!
      Thanks ❤️

  • @Abby-hi4sf
    @Abby-hi4sf 11 місяців тому +3

    Great teacher! I wish all those who visit your page shows their gratitude by thumbs up! Thank you for making Math fun!

    • @PreMath
      @PreMath  11 місяців тому

      I appreciate that!🙏
      You are very welcome!
      Thanks ❤️

  • @gayatrithanvi8901
    @gayatrithanvi8901 11 місяців тому +4

    You are a rare gem teacher❤. We do not many people explaining tricks in free❤

    • @PreMath
      @PreMath  11 місяців тому

      Thanks dear❤️🙏

  • @phungpham1725
    @phungpham1725 11 місяців тому +4

    1/ Let a and b be the sides of the small and big squares respectively.
    The triangles HBG and GCD are similar so HB/BG=GC/CD ---> 3/(a-5)=5/a---> a=25/2
    2/ The angles EDA and GDC are equal so the triangles are congruent.
    We have EA=5 and the area of the triangle EDA= 1/2 x5x12.5= 31.25 (1)
    3/The points E, A, H, and B are collinear. EH=EA+AH= 5+ (12.5-3)= 14.5
    Label HF= h
    Because the triangle EFH and DCG are similar too, so ---> h/EH= CG/DG=5/b---> h= (14.5 x5)/b
    Area of EFH= 1/2 hxb= 1/2 x b x(14.5x5)/b =(14.5x5)/2= 36.25 (2)
    Area of the green area= (1) +(2) = 67.5 sq units

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @gayatrithanvi8901
    @gayatrithanvi8901 11 місяців тому +3

    Ohh! What a nice trick it is ❤ it

    • @PreMath
      @PreMath  11 місяців тому

      Glad to hear that!
      Thanks ❤️

  • @johnwindisch1956
    @johnwindisch1956 11 місяців тому

    Greatly done!

  • @georgebliss964
    @georgebliss964 11 місяців тому +4

    For the similar triangles, I used 5 / DC = 3 / (DC - 5).
    Then 5 ( DC - 5 ) = 3 DC.
    5DC - 25 = 3 DC.
    2 DC = 25.
    DC = 12.5.

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

    • @allanflippin2453
      @allanflippin2453 11 місяців тому +1

      I also solved it this way. For some reason, introducing an unrelated constant such as K adds confusion to something which seems straightforward.

  • @stanbest3743
    @stanbest3743 5 місяців тому

    Just brilliant!

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 11 місяців тому

    Thanks Sir
    Very simplified explain
    Excellent Sir
    With respects

  • @limfilms1089
    @limfilms1089 11 місяців тому

    Brilliant!

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 11 місяців тому

    Very good professor!!

  • @jamestalbott4499
    @jamestalbott4499 11 місяців тому +1

    Thank you! 📏📐📏📐📏📐📏📐

    • @PreMath
      @PreMath  11 місяців тому

      You are so welcome!🌹
      Thanks ❤️

  • @arnavkange1487
    @arnavkange1487 11 місяців тому +4

    Respect button for premath❤

    • @PreMath
      @PreMath  11 місяців тому

      Thanks dear ❤️

  • @akshaymurthy4394
    @akshaymurthy4394 11 місяців тому

    Sir Can' t we use GHB as isoceles right angle triangle and solve further

  • @uwelinzbauer3973
    @uwelinzbauer3973 11 місяців тому +1

    👍

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @arnavkange1487
    @arnavkange1487 11 місяців тому +2

    🎉🎉🎉🎉

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 11 місяців тому +1

    Veri nice sar❤❤❤

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @nunoalexandre6408
    @nunoalexandre6408 11 місяців тому +1

    Love it!!!!!!!!!!!!!!!

    • @PreMath
      @PreMath  11 місяців тому

      Glad to hear that!
      Thanks ❤️

  • @allalwadi7063
    @allalwadi7063 11 місяців тому

    to find CD , BG -->
    Let angle CDG = t
    --> angle BGH = t
    Let CD=X --> BG=X-5 =Y
    tan(t) = 5/X = 3/(X-5)
    5(X-5) = 3X
    2X=25 --> X= 25/2
    Y= 25/2 - 5 = 15/2
    .

  • @santiagoarosam430
    @santiagoarosam430 11 місяців тому

    Llamaremos K a la proyección ortogonal de F sobre AB.
    Los triángulos GCD, EAD y FKE son congruentes; CG=EA=FK=5 ; EK=5+AK=AB ; KB=5 ; KH=5-3=2.
    Los triángulos HKF y HBG son semejantes: KF/KH=GB/3 ; GB=15/2 : CB=DA=EK=(15/2)+5=25/2.
    Área verde =EDAHF =EAD+FKE+HKF =2*EAD+HKF =(5*25/2)+(2*5/2)=135/2 =67.5
    Gracias y un saludo cordial.

  • @murdock5537
    @murdock5537 11 місяців тому +1

    ∎ABCD → AB = a = AH + BH = (a - 3) + 3 = BG + CG = (a - 5) + 5 = CD = AD = a
    ∎DEFG → DE = EF = FG = DG = k; tan⁡(δ) = 5/a = 3/(a - 3) → a = 25/2 → k = 5√29/2 →
    green shaded area = k^2 - 455/4 = 135/2; sin⁡(δ) = 2√29/29

    • @PreMath
      @PreMath  11 місяців тому +1

      Thanks ❤️

  • @wackojacko3962
    @wackojacko3962 11 місяців тому +1

    @ 4:15 .....absolutely beautiful! 🙂

    • @PreMath
      @PreMath  11 місяців тому +1

      Glad to hear that!
      Thanks ❤️

  • @ibrahimchefai2399
    @ibrahimchefai2399 11 місяців тому +1

    Thanks

    • @PreMath
      @PreMath  11 місяців тому

      You are very welcome!
      Thanks ❤️

  • @shadrana1
    @shadrana1 11 місяців тому

    At 0:10,
    Let S1=DC=CB=BA=AD
    Let S2=DG=GF=FE=ED
    Triangle DCG and Triangle GBH are similar since all the angles are equal.
    S1/5=GB/3,
    S1/5=(S1-5)/3
    3S1=5S1-25
    S1=25/2
    Consider triangle DCG,
    S2=sqrt(S1^2+CG^2) Pythagoras
    S2=sqrt(625/4+100/4)=sqrt(725/4)=sqrt((25*29)/4) =(5*sqrt29)/2
    IDGHAI=IABCDI-IDCGI-IGBHI=625/4-125/4-45/4=455/4
    IDGFEI=(S2)^2=((5*sqrt29)/2)^2=(25*29)/4
    Igreen area EFHADI=(S2)^2-IDGHAI=(25*29)/4-455/4= 725/4-455/4
    Igreen area EFHADI=(725-445)/4 =270/4 = 67.5 square units as required.
    Thanks for the puzzle Professor.

  • @giuseppemalaguti435
    @giuseppemalaguti435 11 місяців тому +1

    l:5=(l-5):3..l=12,5..Ag=12,5^2+5^2-(12,5^-5*12,5/2-7,5*3/2)=12,5^2+5^2-(12,5^2-85/2)=25+42,5=67,5

    • @PreMath
      @PreMath  11 місяців тому

      Excellent!
      Thanks ❤️

  • @ChuzzleFriends
    @ChuzzleFriends 11 місяців тому +1

    Start by labeling the side length of square ABCD as x. Therefore, CD = x & BG = BC - CG = x - 5.
    Let α and β be the measures of complementary angles.
    Let m∠CDG = α. Then, because ∠C is a right angle by definition of squares, m∠CGD = β.
    So, because ∠DGF is similarly a right angle, m∠BGF = α.
    And since ∠B is also a right angle by definition of squares, m∠BHG = β.
    So, △DCG ~ △GBH by AA Similarity. A proportion will take place.
    CD/CG = BG/BH
    x/5 = (x - 5)/3
    3x/5 = x - 5
    3x = 5x - 25
    2x = 25
    x = 12.5
    So, the side length of square ABCD is 12.5 u. CD = 12.5, BG = 7.5, & AH = 9.5.
    Apply the Pythagorean Theorem on △DCG to find the area of square DEFG.
    a² + b² = c²
    (12.5)² + 5² = (DG)²
    (DG)² = 156.25 + 25
    = 181.25
    A = s²
    = (DG)²
    = 181.25
    So, the area of square DEFG is 181.25 u².
    Draw a segment AG to separate the overlapping region (quadrilateral ADGH) into two triangles and find its area.
    Quadrilateral ADGH Area = △ADG Area + △AGH Area
    A = 1/2 * b * h
    △ADG Area = 0.5 * 12.5 * 12.5
    = 78.125
    △AGH Area = 0.5 * 9.5 * 7.5
    = 35.625
    ADGH Area = 78.125 + 35.625
    = 113.75
    Green region area = Square DEFG Area - ADGH Area
    = 181.25 - 113.75
    = 67.5
    So, the area of the green region is 135/2 square units, or 67.5 square units.

    • @PreMath
      @PreMath  11 місяців тому

      Excellent!
      Thanks ❤️

  • @ybodoN
    @ybodoN 11 місяців тому

    Drop a perpendicular from F to J on AB. Now ⊿CDG ≅ ⊿ADE ≅ ⊿JEF so CG = AE = JF = 5. Let DC = x so EH = x + 5 − 3.
    Then the area of ⊿ADE = ½ 5 x and the area of ⊿EHF = ½ 5 (x + 2). So the area of the green shaded region is 5 (x + 1).
    Use your favorite method to find that x = 12.5 and the final answer will be 5 (12.5 + 1) = 5 (13.5) = 67.5 square units.

  • @zplusacademy5718
    @zplusacademy5718 11 місяців тому +2

    Extremely beautiful ❤😊😊😊

    • @PreMath
      @PreMath  11 місяців тому

      Thank you! Cheers!❤️🌹

  • @DB-lg5sq
    @DB-lg5sq 11 місяців тому +1

    شكرا لكم على المجهودات
    يمكن وضع z=Cd
    tanCDG =5/z=3/(z-5)
    z=25/2
    ......
    S=135/2

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @prossvay8744
    @prossvay8744 11 місяців тому +2

    Area of green region=(5√29/2)^2-113.75=67,5 square units. ❤❤❤ Thanks sir.

    • @PreMath
      @PreMath  11 місяців тому

      Very good
      You are very welcome!
      Thanks ❤️

  • @ybodoN
    @ybodoN 11 місяців тому +1

    Let AB = BC = CD = DA = x. Then ⅗ x = x − 5 ⇒ x = 25/2 and the area of ⊿CDG ≅ ⊿ADE is ½ · 25/2 · 5 = 31.25 sq. u.
    DE = EF = FG = GD = √((25/2)² + 5²) = ½ 5√29. Then ⊿ADE ~ ⊿FEH ⇒ FH = √29 and the area of ⊿FEH = 36.25 sq. u.
    Since the green shaded region is ⊿ADE + ⊿FEH, its area is 31.25 + 36.25 = 67.5 square units.

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 11 місяців тому +2

    I did it the same way.

    • @PreMath
      @PreMath  11 місяців тому

      Excellent!
      Thanks ❤️

  • @hongningsuen1348
    @hongningsuen1348 10 місяців тому

    Reading comments is enjoyable as they show so many paths to climb a mountain. Some of the paths are very very difficult reserved for expert climbers, definitely not me. I would like to share how I find my easy path for this problem.
    First I notice that DC is the key to solution as it gives solution to areas of large square, small square and the two triangles. Second I notice the similar right-angled triangles by complementary angles such that DC/BG = 5/3 by corresponding sides proportionality equation. Third I notice an equation linking DC and BG such that I can substitute BG by DC. Reflection on how to get a solution is more rewarding that getting a correct answer.
    Solution follows that path:
    1. ∆DCG and ∆GBH are similar triangles. (AAA by complementary angles)
    Hence DC/GB = CG/BH = 5/3 (corresponding sides proportionality equation)
    2. GB = BC - CG
    = DC - 5 (property of square BC = DC and CG given)
    3. DC/GB = DC/(DC - 5) = 5/3 (corresponding sides proportionality equation from above)
    Hence DC = 25/2
    4. Area of green = Area DEFG - Area ABCD + Area DCG + Area GBH
    = (DG2 - DC2) + (5 x DC)/2 + (3 x GB)/2
    = GC2 + (5 x 25/2)/2 + [3 x (25/2 - 5)]/2 (Pythagoras theorem for ∆DCG)
    = 25 + 125/4 + 45/4
    = 25 + 170/4
    = 270/4
    = 67.5

  • @himo3485
    @himo3485 11 місяців тому

    DC=5a GB=3a
    5a=3a+5 2a=5 a=5/2
    DG^2=(25/2)^2+5^2=625/4+100/4=725/4
    DG=5√29/2 GH=3√29/2
    DAH=25/2*19/2*1/2=475/8
    DGH=5√29/2*3√29/2*1/2=435/8
    DEFG=5√29/2*5√29/2=725/4
    area of Green shaded region :
    725/4 - 475/8 - 435/8 = 1450/8 - 910/8
    = 540/8 = 135/2 = 67.5

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 11 місяців тому

    To solve this problem, I used the Geometrical Proof of Pythagorean Theorem.
    I create a Square with Side Length = AB + 5 li un; in wich the hypotenuses are DG; DE; EF and FG.
    Let's call the Side Length of the Small Square [ABCD] "X". And angle HGB and angle GDC "alpha"; as they are congruent angles.
    So:
    If : tan (alpha) = 5 / X
    If : tan (alpha) = 3 / (X -5)
    Then : 5 / X = 3 / (X - 5)
    5 * (X - 5) = 3X ; 5X - 25 = 3X ; 5X - 3X = 25 ; 2X = 25 ; X = 25/ 2 ; X = 12,5 linear units
    So the Area of Square [ABCD] = 12,5^2 = 156,25 sq un
    Now, I know all 3 Squares Areas : 156,25 sq un ; 5^2 + 12,5^2 = DG^2 = 181,25 sq un ; (12,5 + 5)^2 = 17,5^2 = 306.25 sq un.
    Now it's time to find the Green Area!
    We have 2 triangles : [ADE] and [EFH]; and Green Area is equal to Area [ADE] + Area [EFH]
    Area [ADE] = (5 * 12,5) / 2 = 62,25 / 2 = 31,25 sq un
    Area [EFH] = ?
    First we have to calculate Length FH!!
    EH^2 - EF^2 = FH^2
    EH = X - 3 + 5 = X + 2 = 12,5 + 2 = 14,5 li un
    EF = sqrt(181,25) ~ 13,5 li un
    14,5^2 - 13,5^2 = 210,25 - 181,25 = 29
    FH = sqrt(29)
    Area [EFH] = (FH * FE) / 2 = (sqrt(29) * sqrt(181,25)) / 2 = 72,5 / 2 = 36,25
    Answer:
    The Area of the Green Shaded Region is equal to 36,25 sq un + 31,25 sq un = 67,5 square units.

  • @MrPaulc222
    @MrPaulc222 11 місяців тому +1

    Oh Gawd, that looks complicated.
    Unsure which way to go so will assimilate info.
    Start with the sides of the smaller square which I will call x.:
    GCD and HBG are similar, so (x-5)/3 = x/5. (5x-25) = 3x. 2x = 25, so x=25/2 or 12.5, whichever is easier to work with.
    Call the larger square's sides y. (25/2)^2 + 5^2 = y^2. 625/4 + 25 = y^2. 725/4 = y^2.
    Two squares of areas 625/4 and 725/4 square units.
    Area ADE is (5*12.5)/2 = 31.25 because AE=5 (due to CG (given)).
    The relevant sides of HFE should be 5 and (5+12.5-3), so 5 and 14.5. 72.5/2=36.25.
    31.25 and 36.25=67.5 sq units.
    Your way was cleaner and I caused myself to make an extra calculation or two.
    Thank you.

    • @PreMath
      @PreMath  11 місяців тому +1

      Thanks ❤️

  • @JSSTyger
    @JSSTyger 11 місяців тому

    Ill say A = 67.5