Japanese Sangaku | Find the radius | (Identical circles in right triangle) |

Поділитися
Вставка
  • Опубліковано 13 бер 2024
  • Learn how to find the radius of the identical circles inscribed in a right triangle. Important Geometry skills are also explained: circle theorem; Pythagorean theorem; similar triangles; Two tangent theorem. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Japanese Sangaku | Fin...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Japanese Sangaku | Find the radius | (Identical circles in right triangle) | #math #maths #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #JapaneseSangaku #Sangaku #FindRadius #Radius #GeometryMath #PythagoreanTheorem
    #MathOlympiad #CongruentTriangles #SimilarTriangles #TwoTangentsTheorem
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #ExteriorAngleTheorem #PythagoreanTheorem #IsoscelesTriangles #AreaOfTriangleFormula #AuxiliaryLines
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #AreaOfTriangles #CompetitiveExams #CompetitiveExam
    #MathematicalOlympiad #OlympiadMathematics #LinearFunction #TrigonometricRatios
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Olympiad Question
    Find Area of the Shaded Triangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    Exterior Angle Theorem
    pythagorean theorem
    Isosceles Triangles
    Area of the Triangle Formula
    Competitive exams
    Competitive exam
    Find Area of the Triangle without Trigonometry
    Find Area of the Triangle
    Auxiliary lines method
    Pythagorean Theorem
    Square
    Diagonal
    Congruent Triangles
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.
  • Навчання та стиль

КОМЕНТАРІ • 57

  • @predator1702
    @predator1702 3 місяці тому +5

    Exllent solution 👍. Thank you teacher 🙏.

    • @PreMath
      @PreMath  3 місяці тому +2

      Glad you liked it!
      You are very welcome!
      Thanks ❤️

  • @himo3485
    @himo3485 3 місяці тому +8

    AC=√[21^2+28^2]=35
    ED=2r
    21 : 28 : 35 = 3 : 4 : 5 = 1.2r : 1.6r : 2r
    GB=2.2r FB=2.6r
    CD=CG=21-2.2r AE=AF=28-2.6r
    21-2.2r+2r+28-2.6r=35
    2.8r=14 r=5
    Radius of the circle O , Q : 5

  • @wackojacko3962
    @wackojacko3962 3 місяці тому +5

    The beauty of labeling everything! 🙂

    • @PreMath
      @PreMath  3 місяці тому +1

      Excellent!
      Thanks ❤️

  • @SeemaYadav-io4qt
    @SeemaYadav-io4qt 3 місяці тому +7

    Your video is very useful

    • @PreMath
      @PreMath  3 місяці тому

      Excellent!
      Glad to hear that!
      Thanks ❤️

  • @phungpham1725
    @phungpham1725 3 місяці тому +1

    1/The triangle ABC is a 3x7-4x7-5x7 triple so, to make the calculation simpler:
    Assume that r= (radius of the yellow circles/7) in a 3--4-5 triangle.
    AO is the bisector of the angle CAB intersecting BC at point M. By using the bisector theorem:
    CM/AC=BM/AB---> CM/5=BM/4= (CM+BM)/(5+4)=3/9= 1/3
    ----> BM=4/3
    Consider the triangle AMB and AOF, they are similar so OF/BM= AF/AB= a/4---->
    r/(4/3)= a/4----> a= 3r
    2/ Similarly, the bisector CQ of the angle ACB intersects AB at point N, we have b=2r
    3/AC= a+2r+b = 3r+2r+ 2r=5----> 7r=5---> r=5/7
    The radius of the yellow circle= 7r= 5 units

  • @uwelinzbauer3973
    @uwelinzbauer3973 3 місяці тому +4

    Nice challenge, thanks again!

    • @PreMath
      @PreMath  3 місяці тому +1

      Glad to hear that!
      You are very welcome!
      Thanks ❤️

  • @kaziummeruman524
    @kaziummeruman524 3 місяці тому +5

    Mind blowing 🥰😍,,MASTER💜

    • @PreMath
      @PreMath  3 місяці тому

      Glad to hear that!
      Thanks ❤️

  • @mariopopesco
    @mariopopesco 3 місяці тому +2

    Sin BAC = 3/5, cos BAC = 4/5
    Draw lines from O to A and from Q to C. The lines bisects the angles A and C.
    tan BAC/2 = sin / 1+cos = 3/5 / (1+ 4/5) = 1/3
    tan ACB/2 = 4/5 / (1+ 3/5) = 1/2
    AE = r/ tan BAC/2 -> AE = 3r
    DC = r/ tan ACB/2 -> DC = 2r
    AC = 3r + 2r +2r = 35 -> r = 5

  • @johnbrennan3372
    @johnbrennan3372 3 місяці тому +3

    Excellent solution.

    • @PreMath
      @PreMath  3 місяці тому

      Excellent!
      Glad to hear that!
      Thanks ❤️

  • @gibbogle
    @gibbogle 3 місяці тому

    I think you made this a bit more complicated than necessary.
    First, it helps to scale all the distances by 7 at the start, so the triangle sides are 3, 4 and 5.
    Then at your 8:27, we have:
    (4 - a - r)/2r = 4/5 (3 - b - r)/2r = 3/5
    20 - 5a - 5r = 8r 15 - 5b - 5r = 6r
    Add these two equations, giving 35 - 5(a + b) - 10r = 14r
    Now from the length of the hypotenuse, 5 = a + b + 2r, i.e. a + b = 5 - 2r
    35 - 5(5 - 2r) = 24r, 20 + 10r = 24r, 20 = 14r, r = 10/14 = 5/7.
    Scaling back, r = 5.

  • @misterenter-iz7rz
    @misterenter-iz7rz 3 місяці тому +2

    The calculation would be a bit troublesome, GB=2r×(3/5)+r=11/5 r, FB=2r×(4/5)+r=13/5 r, so 21-11/5 r+28- 13/5 r+ 2r=35, 14=14/5 r, r=5.😊

    • @PreMath
      @PreMath  3 місяці тому

      Excellent!
      Thanks ❤️

  • @jamestalbott4499
    @jamestalbott4499 3 місяці тому

    Thank you!

  • @29brendus
    @29brendus 3 місяці тому

    Really interetsing and I am now grasping the idea of using equations to solve geometrical unknowns. Nobody ever explained it to me this way before. I am good at maths, but a sucession of bad maths teachers is cumulative, I'm afraid.

  • @cs_fl5048
    @cs_fl5048 3 місяці тому

    Enjoyable...thanks...

  • @soli9mana-soli4953
    @soli9mana-soli4953 3 місяці тому

    I've found the solution summing the areas inside ABC
    Area(AOB)+area(CQB)+ Area trapezoid(ACQO) + Area(OQB) = Area(ABC)
    28*r*1/2+21*r*1/2+(35+2r)*r*1/2+(84/5-r)*2r*1/2=21*28*1/2
    14r+21/2r+35/2r+r^2+84/5r-r^2=294
    R=5

  • @istvanherenyi3431
    @istvanherenyi3431 2 місяці тому

    Area ABO triangle: 28r/2
    Area BCQ triangle: 21r/2
    Area AOQC trapeze: (2r+35)r/2
    Height OBQ triangle: 84/5-r so the area OBQ triangle: (84/5-r)2r/2
    The sum of these areas: 21x28/2
    So r=5

  • @manuelantoniobahamondesa.3252
    @manuelantoniobahamondesa.3252 2 місяці тому

    Muy bueno profe.!

  • @rssl5500
    @rssl5500 3 місяці тому

    Another sol:
    Consider lime EO,OF,DQ,QG
    Since they are radius they are equal hence the line is angle bisector using half angle sine formula we can easily see that the hypotenuse of triangle is 7r and is 35 hence r=5

  • @jan-willemreens9010
    @jan-willemreens9010 3 місяці тому +1

    ... Good day to you, Step(1): Triplet( 7*3 - 7*4 - 7*5 ) gives us I AC I = 35 u. ... I ED I = I OQ I = 2r ( r is radius circles ) ... I AE I = I AF I = X & I CD I = I CG I = Y ... so, I FB I = 28 - X & I GB I = 21 - Y ... Angle(BAC) = ARCTAN(3/4) ... Step(2): Creating inside right triangle(OQS) , where Angle(QSO) = 90 deg. ... Vertical distance V between Q and O ... I QS I = 21 - Y - r & Horizontal distance H between Q and O ... I OS I = 28 - X - r and Angle(SOQ) = Angle(BAC) = ARCTAN(3/4) ... last but not least I AC I = 35 = X + 2r + Y ... now TAN(SOQ) = TAN(BAC) = 3/4 = I QS I / I OS I ... 3/4 = ( 21 - Y - r ) / (28 - X - r ) ... after a few steps we obtain ... r = 3X - 4Y or 2r = 6X - 8Y & 2r = 35 - ( X + Y ) ... which gives us X - Y = 5 or Y = X - 5 .... so, r = 3X - 4(X - 5) = 20 - X .... finally ... TAN(OAF) = I OF I / I AF I = r / X = TAN(ARCTAN(3/4)/2) , so X = r / TAN(ARCTAN(3/4)/2) & recalling r = 20 - X ... after a few steps we obtain r = 20 / ( 1 + 1/TAN(ARCTAN(3/4)/2) ) = 20 / 4 = 5 u. ... r = 5 u. ... now it is time to watch your, I assume, much easier and clear explanation sir (lol), but reading other comments I guess I found the right answer for radius r in the end (lol) ... many thanks for your continuing interesting and fun geometry exercises ... best regards, Jan-W

  • @marcgriselhubert3915
    @marcgriselhubert3915 3 місяці тому +2

    AC = 35 (easy). Now, let's name t = angleBAC, we have tan(t) = 21/28 = 3/4, so tan(t/2) = 1/3 (easy to obtain with the formula giving tan(2.x))
    So, a = AF = R/tan(t/2) = 3.R in triangle AFO.
    Now let's name t' = angleACB, t' = 90° -t, so t'/2 = 45° -t/2 and tan(t') = 1/2 (easy to obtain with the formula giving tan(a -b))
    So b = CG = R/tan(t') = 2.R in triangle CQG.
    Now let'a use an orthonormam, center A, first axis (AB), second axis (AC). We have O(a;R) or O(3.R;R) and Q(28 -R; 21 -b) or Q(28 -R; 21 -2.R)
    Then we have VectorOQ(28 -4.R; 21 -3.R) and OQ^2 = (28 -4.R)^2 + (21 -3.R)^2 = 784 -224.R +16.R^2 +441 -126.R +9.R^2 = 25.R^2 -350.R +1225
    Or OQ = 2.R and OQ^2 = 4.R^2, then we have the equation: 21.R^2 -350.R +1225 = 0. Deltaprime = (-175)^2 -21.1225 = 4900 = (70)^2
    So: R = (175 + 70)/21 = 245/21 = 35/3 which is rejected as in this case AF = a= 35 > AB =28, or R = (175 - 70)/21 = 5 which is our solution.

    • @PreMath
      @PreMath  3 місяці тому

      Thanks ❤️

    • @Masterclass_Geometry
      @Masterclass_Geometry 3 місяці тому

      great job, nice solution ... I really like it

    • @ybodoN
      @ybodoN 3 місяці тому

      I did the same as you to get AF = AE = 3R and CG = CD = 2R. But then I noticed that ED = 2R, so AC = 35 = 7R and R = 35/7 = 5 units 😉

  • @padraiggluck2980
    @padraiggluck2980 3 місяці тому

    ⭐️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 3 місяці тому

    Radius (R) equal to 5 Linear Units.
    First draw a Scalene Triangle [ABC] as here given, with sides 21 / 28 / 35, being the point A the Origin of the Coordinates (0 ; 0).
    AC = 35, because sqrt(21^2 + 28^2) = sqrt(441 + 784) = sqrt(1.225) = 35. Check!!
    Now, if I draw a a Line X = 7 I get a Square 21 by 21.
    The Center (interception of the 2 Diagonals) of this Square have coordinates (16 ; 12).
    Passing a Perpendicular Line to AC and in point (16 ; 12), the Center of the Square, we get a Triangle with Sides 15 / 20 / 25.
    The Area of this Triangle is A = (Base * height) / 2 = (25 * 12) / 2 = 300 / 2 = 150 sq un
    Now :
    (15R + 20R + 25R) / 2 = 150
    60R / 2 = 150
    30R = 150
    R = 150 / 30
    R = 5
    Answer:
    The Radius is equal to 5 Linear Units.

  • @arnavkange1487
    @arnavkange1487 3 місяці тому +6

    👇1 like =10 marks increase in exams .....do not take risk as exams are important

    • @PreMath
      @PreMath  3 місяці тому +2

      Excellent!
      Thanks ❤️

    • @michaelgarrow3239
      @michaelgarrow3239 3 місяці тому +4

      Is this like an electronic Apple for the teacher?
      Bet you sat in the front of the class… 😁

    • @arnavkange1487
      @arnavkange1487 3 місяці тому +1

      yes

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 3 місяці тому

    I used trigonometry to solve. Very good see other solution! Thanks professor!!

  • @unknownidentity2846
    @unknownidentity2846 3 місяці тому

    Let's find the radius R:
    .
    ..
    ...
    ....
    .....
    First of all we apply the Pythagorean theorem to calculate the missing side length of the right triangle ABC:
    AC² = AB² + BC² = 28² + 21² = (4*7)² + (3*7)² = 4²*7² + 3²*7² = (3² + 4²)*7² = 5²*7² = (5*7)² = 35²
    ⇒ AC = 35
    The area of the right triangle ABC can easily be calculated:
    A(ABC) = (1/2)*AB*BC = (1/2)*28*21 = 294
    Now we divide the triangle ABC into a variety of figures:
    A(ABC) = A(ABO) + A(BCQ) + A(AEO) + A(CDQ) + A(DEOQ) + A(BOQ)
    Since AC is a tangent to both circles, we know that ∠AEO=∠CEO=∠ADQ=∠CDQ=90°. Because of EO=DQ=R and because the two circles have exact one point of intersection, we can conclude that DEOQ is a rectangle with the side lengths EO=DQ=R and DE=OQ=2*R. Therefore we obtain:
    A(ABO)
    = (1/2)*AB*OF
    = (1/2)*AB*R
    = (1/2)*28*R
    = 14*R
    A(BCQ)
    = (1/2)*BC*GQ
    = (1/2)*BC*R
    = (1/2)*21*R
    = 21*R/2
    A(AEO) + A(CDQ)
    = (1/2)*AE*EO + (1/2)*CD*DQ
    = (1/2)*AE*R + (1/2)*CD*R
    = (1/2)*(AE + CD)*R
    = (1/2)*(AC − DE)*R
    = (1/2)*(AC − 2*R)*R
    = (1/2)*AC*R − R²
    = (1/2)*35*R − R²
    = 35*R/2 − R²
    A(DEOQ) = R*2*R = 2*R²
    For the calculation of A(BOQ) we need the height of the triangle ABC according to base AC:
    A(ABC) = (1/2)*AC*h(AC)
    ⇒ h(AC) = 2*A(ABC)/AC = 2*294/35 = 84/5
    A(BOQ)
    = (1/2)*OQ*h(OQ)
    = (1/2)*(2*R)*(h(AC) − R)
    = R*(h(AC) − R)
    = R*(84/5 − R)
    = 84*R/5 − R²
    So finally we get:
    294 = 14*R + 21*R/2 + 35*R/2 − R² + 2*R² + 84*R/5 − R²
    294 = 294*R/5
    ⇒ R = 5
    Best regards from Germany

  • @misterenter-iz7rz
    @misterenter-iz7rz 3 місяці тому

    Well-designed puzzle, let the right angled triangle be 3x-4x-5x, the answer r is integer, when x is multiple of 7, as r=5/7 x.🥰🥰🥰

  • @michaelgarrow3239
    @michaelgarrow3239 3 місяці тому +1

    As an old framing carpenter I can relate to 3-4-5 rule. Used it 1,000’s of times.

    • @PreMath
      @PreMath  3 місяці тому

      Excellent!
      Thanks ❤️

  • @fearfulninja3450
    @fearfulninja3450 3 місяці тому

    Can you please prove the similarity

  • @quigonkenny
    @quigonkenny 3 місяці тому

    As BC = 21 = 3(7), and AB = 28 = 4(7), ∆ABC is a 7:1 ratio Pythagorean triple triangle, and CA = 5(7) = 35. Draw radii OE, OF, QD, and QG. As radii, these segments are perpendicular to the tangents: AB to OF, BC to QG, and CA to QD and OE. Draw OQ. The quadrilateral OQDE is a rectangle, as OQ and DE are parallel and QD and OE are both perpendicular to DE. Thus OQ = DE = 2r.
    Let M be a point on BC where OM is parallel to AB amd perpendicular to BC. Let N be a point on AB where QN is parallel to BC and perpendicular to AB. Let the intersection point of OM and QN be P.
    Take note of trisngle ∆OPQ. All of its sides are parallel to the sides of ∆ABC, therefore all of its angles are the same, and the two triangles are similar. As OQ = 2r, OP = 4/5(2r) = 8r/5, and PQ = 3/5(2r) = 6r/5.
    By two tangent theorem, GC and CD are congruent, and EA and AF are congruent. Let CD = GC = x and AF = EA = y. By observation, AB = y + 8r/5 + r, BC = r + 6r/5 + x, and CA = x + 2r + y. As we have numerical values for all three sides, we should be able to solve for r.
    y + 8r/5 + r = 28 ---- (1)
    y = 28 - 13r/5
    r + 6r/5 + x = 21 ---- (2)
    x = 21 - 11r/5
    x + 2r + y = 35 ---- (3)
    21 - 11r/5 + 2r + 28 - 13r/5 = 35
    24r/5 - 2r = 49 - 35 = 14
    14r/5 = 14
    r = (5/14)14 = 5

  • @giuseppemalaguti435
    @giuseppemalaguti435 3 місяці тому +1

    AE=a,DC=b...(28-(a+r))^2+(21-(b+r))^2=(2r)^2....35=(a+r)+(b+r)...sostituisco risulta (28-(a+r))^2+((a+r)-14)^2=4r^2..(1eq)...2arctg(r/a)=arctg21/28...a=3r(2eq)...inserisco la 2)nella 1)...(28-4r)^2+(4r-14)^2=4r^2.svoogendo i calcoli rimane 32r^2-336r+980=4r^2....r^2-12r+35=0..r=6+1=7..r=6-1=5.…uhm..credo r=5, sia corretta

    • @PreMath
      @PreMath  3 місяці тому

      Thanks ❤️

  • @GetMeThere1
    @GetMeThere1 2 місяці тому

    Now I wonder: Could you solve for r for any number of circles (as long as they were tightly inscribed)?

  • @sreeshjasti2
    @sreeshjasti2 3 місяці тому

    isn't it 49-24r/5=35?

  • @JSSTyger
    @JSSTyger 3 місяці тому

    I'll say r=5.

  • @robertlynch7520
    @robertlynch7520 3 місяці тому +1

    Naturally … yet another way, but essentially the SAME way as PreMath (but EASY! if you're good at manipulating basic algebra)
    Draw line between centers of the circles.
    [1.1]  center-to-center length = 2𝒓
    Figure length of hypotenuse of big triangle
    [2.1]  hypotenuse = √( 21² + 28² )
    [2.2]  hypotenuse = 35
    This could also have been found by noting that 21 = 3×7 and 28 = 4×7, so the hypotenuse must be 5×7. Oh, well, I'm not intuitive enough to do it the 'easy way'.
    Anyhow, now draw 2 more lines from the centers of the circles. A vertical one on the right circle and a horizontal one from the left circle. They intersect, forming a similar triangle to the big triangle. Similar means 'proportionate to'. So…
    [3.1]  horizontal = ⅘ center-to-center … from [1.1]
    [3.2]  horizontal = ⅘ × 2𝒓
    [3.3]  horizontal = 8⁄5𝒓
    Likewise, the vertical
    [4.1]  vertical = ⅗ center-to-center … from [1.1]
    [4.2]  vertical = ⅗ × 2𝒓
    [4.3]  vertical = 6⁄5𝒓
    Armed with these, now the big triangle's base line consists of 3 parts
    [5.1]  28 = something + 8⁄5𝒓 + 𝒓
    [5.2]  28 = something + 13⁄5𝒓
    [5.3]  something = 28 - 13⁄5𝒓
    Connecting center of left circle to left corner of big triangle creates (with 𝒓 radius) 2 isosceles triangles; the point though is that [28 - 13⁄5𝒓] is the same for both the base-line bit and the hypotenuse line bit.
    So, working again with the hypotenuse line, the upper-right circle similarly creates an Isosceles triangle pair, whose edge side length … is reducible in algebra!
    [6.1]  𝒒 = 35 - (28 - 13⁄5𝒓) - 2𝒓 … reduces to
    [6.2]  𝒒 = 7 + ⅗𝒓
    ALSO, note that [𝒒] is also defined from the '21' side of the big triangle as
    [7.1]  𝒒 = 21 - 𝒓 - 6⁄5𝒓 … from [4.3], reduces to
    [7.2]  𝒒 = 21 - 11⁄5𝒓
    So, make these equal to each other, then find 𝒓!
    [8.1]  7 + ⅗𝒓 = 21 - 11⁄5𝒓 … rearrange
    [8.2]  ((3 + 11)/5)𝒓 = (21 - 7)
    [8.3]  (14⁄5)𝒓 = 14 … multiply by 5, divide by 14
    [8.4]  𝒓 = 5
    And THAT is the solution! No quadratics, no sines, no tangents, no nothing special. Just follow-the-parts algebra.
    ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅
    ⋅-=≡ GoatGuy ✓ ≡=-⋅

  • @vinodpatel8830
    @vinodpatel8830 3 місяці тому

    In Hindi language plz