Can you solve this ? | Cambridge University Entrance Exam ?

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 11

  • @arturdietrich
    @arturdietrich 2 дні тому +2

    Nice!

    • @superacademy247
      @superacademy247  2 дні тому

      Thanks for the kind words! 😊Glad you enjoyed it! 🤩

  • @thomasgreene5750
    @thomasgreene5750 2 дні тому +4

    Another, quicker way of getting to the solution is to use Euler's Identity, exp(ix)=cosx+i*sinx, to write 8i as 8*exp(i*pi/2) and k=(+/-)2sqrt(2)*exp(i*pi/4) = (+/-)2sqrt(2)*[sqrt(2)/2+i*sqrt(2)/2]. Simplifying, k = (+/-)2*(1+i).

    • @superacademy247
      @superacademy247  2 дні тому

      Thanks for sharing your method!That's a powerful approach. 🤩💪

  • @bigjazbo9217
    @bigjazbo9217 2 дні тому +3

    I think neither a or b can be imaginary. This is because when you equated the real and imaginary parts of k2 = 8i, with k = a + bi, you are assuming a and b to be real. If a and b are allowed to be i.aginary or complex, you cannot equate real and imaginary parts.

    • @JossWainwright
      @JossWainwright День тому

      Yes, this is correct. When writing in a + bi form, a and b are assumed to be real.

  • @sonicbreaker00
    @sonicbreaker00 2 дні тому +2

    you so called teachers need to learn math first before you make these videos. what takes 2 lines with polar form took you an entire notebook !

    • @superacademy247
      @superacademy247  2 дні тому

      I appreciate you taking the time to share your perspective. 🤩 It's a great idea to try different methods for solving problems. 💪

    • @sonicbreaker00
      @sonicbreaker00 2 дні тому

      @@superacademy247 what do you get out of these videos that you make ?

    • @superacademy247
      @superacademy247  2 дні тому

      I help thousands of learners from around the world on how to solve Math problems. I've improved Math skills 😍 of many students across the globe.💡💡💡👏👏👏

    • @cazacumihail3671
      @cazacumihail3671 День тому

      @@superacademy247, yet a , b must be real !! Learn more about complex numbers