Can you Solve Cambridge University Admission Question ?

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 5

  • @christopherward2748
    @christopherward2748 12 годин тому +1

    Very elegant way of doing it!

  • @prollysine
    @prollysine 20 годин тому +2

    1/Vx=log((1+V5)/2)/log5 , x=(log5/log((1+V5)/2))^2 , x=~ 11.186027 ,

  • @ManojkantSamal
    @ManojkantSamal 19 годин тому +1

    X= log 5/{log (3+*5)- log 2} or
    X=log 5/{ log (3-*5)-log 2}..... May be
    *= read as to the power
    ^=read as square root
    As per question
    25^(1/*x)+125^(1/*x)=625^(1/*x)
    5^(2/*x)+5^(3/*x)=5^(4/*x)
    Let 5^(1/*x)=R
    So,
    R^2+R^3=R^4
    R^2(1+R)=R^4
    1+R=R^4/R^2
    1+R=R^2
    R^2-R-1=0
    Here a=1,b=-1, c=-1
    D=b^2- 4ac
    =(-1)^2-(4×1×-1)
    =1+4=5
    *D=*5
    R=(-b±*D)/2a
    ={-(-1)±*5}/(2×1)
    =(1±*5)/2
    R^2=(1+5+2*.*5)/4 or
    (1+5-2.*5)/4
    R^2=(6+2.*5)/4 or (6-2.*5)/4
    =2(3+*5)/4 or 2(3-*5)/4
    =(3+*5)/2 or (3-*5)/2
    Again
    R^2={5^(1/*x)}^2
    =[5^{(1/x)^(1/2)}^2
    =5^(1/x)
    So,
    5^(1/x)=(3+*5)/2
    Take the log
    log {5^(1/x)}=log{(3+*5)/2}
    (1/x). log 5 =log(3+*5) - log 2
    (1/x)={log(3+*5)-log2 }/log 5
    X=log 5/{log(3+*5) -log2 }
    Similarly Taking the log we'll get
    X=log 5/{log(3-*5) - log2 }

    • @superacademy247
      @superacademy247  14 годин тому

      Thanks for sharing your method 😎💯💕✅🙏💖