Impossible integral?

Поділитися
Вставка
  • Опубліковано 15 гру 2024

КОМЕНТАРІ • 164

  • @blackpenredpen
    @blackpenredpen 5 років тому +196

    Dr. P in the house!!!

    • @timka3244
      @timka3244 5 років тому

      @blackpenredpen, hi. Im subscribed to you, Black Pen Red Pen. And Im subscribed to Dr Peyam, and to your son Fematika. And to Flammable Maths.

    • @snbeast9545
      @snbeast9545 5 років тому +1

      WHOA!!!

    • @shayanshaikh534
      @shayanshaikh534 5 років тому +1

      He used blue pen and red pen
      :(

    • @黃信維-t3c
      @黃信維-t3c 5 років тому +1

      blackpenredpen Well, I think for this question, you can multiply by e^(-y^2)dy
      Let it be a double integral and change it into polar coordinate ,then square root.
      Is my opinion correct?

  • @acobolew1
    @acobolew1 5 років тому +73

    Makes silly joke. Laughs at own joke. Explains own joke. Elaborates explanation of own joke.
    I love it...termwise

  • @benjaminbrady2385
    @benjaminbrady2385 5 років тому +82

    Gauss: This integral is impossible
    Dr. Peyam: Hold my beer

    • @iamtrash288
      @iamtrash288 4 роки тому +1

      I don't remember well but didn't Gauss use the very neat trick of using multiple integrals and then converting it to polar coordinates?

    • @benjaminbrady2385
      @benjaminbrady2385 4 роки тому

      @@iamtrash288 well yeah. Gauss was a genius so no surprises there and there can be no overstatement about that either. I was just making a joke about Peyam making it look easy

    • @iamtrash288
      @iamtrash288 4 роки тому +1

      @@benjaminbrady2385 oh I see. I just thought that I knew it wrong or something and it was an integral that Gauss called impossible. Though I guess it is kinda obvious from my previous coment

  • @magnetonerd4553
    @magnetonerd4553 5 років тому +12

    I remember when I first learned how to do this. I was still a technician in the Air Force. I would used it to verify bit error rate values. The people around me thought I was a wizard because of this technique!

  • @cameronkhanpour3002
    @cameronkhanpour3002 5 років тому +43

    for the power expansion of e^-x^2 why is it -x^6/6! ? shouldnt it be -x^6/3! ?

    • @mountainc1027
      @mountainc1027 5 років тому +10

      Pretty sure he just got confused since 3! = 6
      I think it's supposed to be 3!

    • @Convergant
      @Convergant 5 років тому +1

      @@mountainc1027 Or he though it was (-1)^n x^2n /2n!

    • @fadiafazaldad6615
      @fadiafazaldad6615 3 роки тому

      Hi where is that vedio (expansion of e^-x/2)

  • @tom_szcz_org
    @tom_szcz_org 5 років тому +27

    When I saw the thumbnail I was like
    SAY WHAAAAAAAAAAT?
    Of course he’s gonna do some πM magic

  • @weerman44
    @weerman44 5 років тому +83

    2:16 This has to be 3!, right?
    Other than that, fun video :)

    • @davidgould9431
      @davidgould9431 5 років тому +24

      I'm sure Dr Peyam expanded it to 6 and was so surprised that it was so easy that he just put a normal exclamation mark after it.

    • @Tomaplen
      @Tomaplen 5 років тому +6

      he meant a shouted 6, not 6 factorial, of course.

    • @Uni-Coder
      @Uni-Coder 5 років тому

      @@Tomaplen It is "shouted 6" but pronounced as "6 factorial" :)

    • @alejandroill
      @alejandroill 5 років тому

      I noticed the same thing haha

  • @rishavgupta2117
    @rishavgupta2117 5 років тому +34

    Hey dr peyam now do basel problem in 12 ways.

    • @Praddyy29
      @Praddyy29 5 років тому

      Brother what are you currently studying for?

    • @rishavgupta2117
      @rishavgupta2117 5 років тому

      @@Praddyy29 I am going to class XI this year and I am a jee aspirant

    • @ddm1912
      @ddm1912 5 років тому +1

      @@rishavgupta2117 all the best bro I gave jee this year.

    • @rishavgupta2117
      @rishavgupta2117 5 років тому

      @@ddm1912 Thanks and best of luck for Advance

  • @yigityigit3419
    @yigityigit3419 5 років тому +1

    Another possible way= Integral[e*(-ysquare)]dy gives the same thing. Multiplying them into the double integral(which is double integral of "e to the negative x*2+y*2" ) gives the result's square. Then use polar coordinates and obtain doubleintegral[e*(-r square).r]drdθ. Substitute r*2=u. (Btw θ is from 0 to 2π and r is from 0 to infinity) Solve the integral,get π and take its square root there we have sqrrootπ .

  • @SAM90909
    @SAM90909 2 роки тому

    Yup I exactly done with integration of e^x^2 using maclaurin series. SUM x^(2n-1) / (2n-1) n!

  • @nickzimmerman8143
    @nickzimmerman8143 Рік тому +1

    There's a minor mistake at 2:16 on the 4th term of the Taylor polynomial for e^-x^2. It should be -(x^6)/(3!) not -(x^6)/(6!).

  • @Circuito28
    @Circuito28 5 років тому

    Dr. P you're an example for me, you seem to be a really good person, love from Bologna!!

    • @drpeyam
      @drpeyam  5 років тому +1

      Grazie 😄

    • @Circuito28
      @Circuito28 5 років тому

      @@drpeyam figurati, continua così 💪❤

  • @mariaconceicao-ey4wu
    @mariaconceicao-ey4wu 5 років тому +2

    Dr. Peyam the integral is a beautiful calculus, thank you for introducing us 👍.

  • @shandyverdyo7688
    @shandyverdyo7688 5 років тому +8

    R.I.P. erf(x)

  • @zivssps
    @zivssps 4 роки тому +3

    Can you prove that the series goes to sqrt(pi)/2 then x approach infinity?
    In another words, prove by the series that the integral from 0 to infinity equal to sqrt(pi)/2.
    Thank you!

    • @cadekachelmeier7251
      @cadekachelmeier7251 3 роки тому

      If you haven't found it in the past 11 months, he actually already did it here: ua-cam.com/video/kpmRS4s6ZR4/v-deo.html

    • @lorenzosaudito
      @lorenzosaudito 2 роки тому

      @@cadekachelmeier7251 That's not what he did

  • @erikdurfey5576
    @erikdurfey5576 5 років тому

    Dr Peyam The Mathemagic Man! LOVE this channel, thank you!

  • @spaceeternitydaniel8552
    @spaceeternitydaniel8552 5 років тому +1

    Bro this is amazing, the happiest mathematician :)

  • @erickhwang9091
    @erickhwang9091 5 років тому +9

    If mathematics have iron man it would be black pen red pen... dr. P is doctor Strange

  • @BirilliantSkyStar
    @BirilliantSkyStar 2 роки тому

    ∫e^(x²)dx: I am inevitable
    Dr. P: I am Peyam

  • @sofianeafra7023
    @sofianeafra7023 5 років тому +3

    Hi dr peyam if ln(0) doesn't exist then How we calcul the integral from 0 to π/2 of tan(x) using series ?

    • @drpeyam
      @drpeyam  5 років тому +1

      It’s an improper integral

    • @sofianeafra7023
      @sofianeafra7023 5 років тому +1

      Dr Peyam what that means ? Diverges !

  • @cngz9547
    @cngz9547 5 років тому +1

    Best duo in UA-cam .

  • @afifakimih8823
    @afifakimih8823 5 років тому +1

    Dr.Peyam is very nice and funny guy..and very good mathematician as well.

  • @xcalibur6482
    @xcalibur6482 5 років тому +5

    This is a pretty better camera angle... : )

  • @andersyu4464
    @andersyu4464 5 років тому +6

    Integral of x^x: laughs

  • @qubix27
    @qubix27 5 років тому

    So you can prove that as x goes to infinity the power series (-1)^n*x^(2*n+1)/(n!*(2*n+1)) for n from 0 to infinity converges to sqrt(pi)/2, C = 0 and that e^(-x^2) is even function and it will be the 13th way to calculate the Gaussian Integral.
    Edit: C = 0 is unnecessary and of course it can be any real number

  • @martind2520
    @martind2520 5 років тому +7

    Three eighths of the comments are people talking about how the denominator should have been 3! instead of 6!.

    • @drpeyam
      @drpeyam  5 років тому +2

      Yeah, I know 🙄

    • @dhunt6618
      @dhunt6618 5 років тому +3

      Isn't is π/8? All the complaints are irrational!

    • @ddm1912
      @ddm1912 5 років тому

      @@dhunt6618 lmfaooo

  • @anuvette
    @anuvette 5 років тому +3

    Didnt u make a 12 part series about this already

    • @kamilbizon8317
      @kamilbizon8317 5 років тому +3

      He only calculated value of improper integral, he didn't find an actual antiderivative

    • @drpeyam
      @drpeyam  5 років тому +1

      Anu I did, but this is the director’s cut 😉

  • @Idk-hp3oo
    @Idk-hp3oo 5 років тому +6

    well the integrated series looks awfully a lot like the taylor series of sin(x) at a=0 so that explains where pi comes from this integral lol (but hopefully i will see a proof one day showing the connection xD)

    • @PeterBarnes2
      @PeterBarnes2 5 років тому

      Here's a little something using the 'Taylor Transform' I commented about in previous videos:
      for ((i)^(z-1) + (-i)^(z-1)) = ((-1)^z)X(z)
      T[ sin(x) ](z) = ((-1)^z)X(z) / 2*Γ(z+1)
      and
      T[ {integral}[e^(-x^2)]dx ](z) = ((-1)^z)X(z) / z*Γ( (z+1)/2 )
      so
      T[ {integral}[e^(-x^2)]dx ](z) / T[ sin(x) ](z) =
      2*Γ(z+1) / z*Γ( (z+1)/2 ) =
      2^(z) * Γ(z/2) / √π
      This is not likely to translate into something nice without a better understanding of this 'Taylor Transform' and it's inverse. The interesting part is how much this resembles the functional equation for the Riemann Zeta function.

  • @ajiwibowo8736
    @ajiwibowo8736 5 років тому +4

    You doing the impossible.
    Yes, I am. Cuz I am π am
    (This is the best part) 😂😂😂

  • @bhuvaneshs.k638
    @bhuvaneshs.k638 5 років тому

    What we used to do is consider 2 integrals I(X) and I(y) then convert it to cylindrical coordinates using x²+y²

    • @drpeyam
      @drpeyam  5 років тому

      Check out the playlist

  • @soheilshirmohamadi3449
    @soheilshirmohamadi3449 5 років тому +1

    Well we have a function defining the last sum made by the power series, it's 2/√π ×erf(x) also known as error function

  • @coefficient1359
    @coefficient1359 5 років тому +2

    I love these integrals 😘😘😘😘

  • @YitzharVered
    @YitzharVered 5 років тому +1

    This is awesome!

  • @wahyuhidayat7042
    @wahyuhidayat7042 5 років тому +1

    @Dr.Peyam I have the question of math, but I can't solve it. Can you help me ?

    • @Magic73805
      @Magic73805 5 років тому

      Send me

    • @wahyuhidayat7042
      @wahyuhidayat7042 5 років тому +1

      @@Magic73805 P(x) : x^2+4 remainder (2x+3), P(x) : x^2+6 remainder (6x-1). If P(x) : x^4+10x^2+24 remainder s(x),then s(4)?

    • @wahyuhidayat7042
      @wahyuhidayat7042 5 років тому

      @@Magic73805 -109

  • @manla8397
    @manla8397 5 років тому +4

    It seems the series has a slow convergence.

  • @newtonnewtonnewton1587
    @newtonnewtonnewton1587 5 років тому +1

    Today's lecture is very funny thanks a lot D peyam السلام عليكم

  • @jonathanfelixirwantho6158
    @jonathanfelixirwantho6158 Рік тому

    Good Instruction

  • @paulovictorfagundescampos7008
    @paulovictorfagundescampos7008 5 років тому +1

    Sou muito fã do seu canal, não perco um vídeo seu, parabéns

    • @drpeyam
      @drpeyam  5 років тому +1

      Obrigado!!! 😄

  • @JDMaxton1999
    @JDMaxton1999 4 роки тому

    Dr. P, we can only plug in because the radius is infinity, right?
    In addition, why do you separate the (-1)^n out before integrating

    • @drpeyam
      @drpeyam  4 роки тому +1

      Yep, and it’s because (-1)^n is a constant, but we don’t really need to separate it out

    • @JDMaxton1999
      @JDMaxton1999 4 роки тому

      @@drpeyam so I could integrate without doing that?

  • @mohammedhubail1607
    @mohammedhubail1607 5 років тому +1

    But it looks like it converges when we intgrate from 0 to inf

  • @jarmingho
    @jarmingho 5 років тому +1

    So impressive

  • @pierreabbat6157
    @pierreabbat6157 5 років тому

    I've done this with the Euler spiral, using 8-byte floats, and it becomes unusably inaccurate when |x| is bigger than 6. How do you compute this in the tails (the tightly winding spirals of the Euler spiral)?

    • @edwardhuff4727
      @edwardhuff4727 5 років тому

      use the vanilla google android calculator app... Or use GMP. Science and technology
      GNU Multiple Precision Arithmetic Library
      Granulocyte-macrophage progenitor
      Guanosine monophosphate

  • @sabilal-rashad
    @sabilal-rashad 5 років тому +1

    This is amazing

  • @IoT_
    @IoT_ 5 років тому

    But can we say exact number of terms to get exact decimal place? Is there a formula? I feel that I had such formula when I learned calculus 9 years ago

  • @manda3dprojects966
    @manda3dprojects966 5 років тому +1

    The solution is: sqrt(pi) * erf(x) / 2 where erf is the error function. ... What did I do? I used Mathcad.

  • @XanderGouws
    @XanderGouws 5 років тому

    Congrats again on 20K

    • @drpeyam
      @drpeyam  5 років тому +1

      Thank you!!!! 😄

  • @sirmac6726
    @sirmac6726 5 років тому

    Todos sabemos que esta función no tiene una primitiva, pero cómo lo sabemos?, hay una demostración?, si tengo que integrar una función, cómo sé si tiene primitiva? cómo demuestro que no la tiene?

    • @drpeyam
      @drpeyam  5 років тому +1

      Es muy dificil demonstrarlo, se necesita la teoria de Galois, no la entiendo

  • @seinlanda5492
    @seinlanda5492 5 років тому +1

    Heard the mathematicians drove crazy but i thought that it was a myth, he's smart af but dude it's scary

  • @yashzod920
    @yashzod920 5 років тому

    I don't know y but Dr Sheldon Cooper came to my mind on watching this vedio....

  • @MrRyanroberson1
    @MrRyanroberson1 5 років тому

    Legendary.

  • @helloitsme7553
    @helloitsme7553 5 років тому

    What if we just define a new function Bell(x) or something (cause the curve looks like a bell) to be this anti derivative and then that's the Taylor series for it

    • @vangrails
      @vangrails 5 років тому

      That feels like cheating to me.

  • @Bastian-kx5jg
    @Bastian-kx5jg 5 років тому

    He is always happy

  • @bogdancorobean9270
    @bogdancorobean9270 5 років тому

    Just came from a video about an old Sci-Fi short story in which one of the main characters is an all-powerful entity referred to as "AM" :) Dunno if it could integrate exp(-x^2) though.

    • @drpeyam
      @drpeyam  5 років тому +1

      AM as in PeyAM? 😂

    • @bogdancorobean9270
      @bogdancorobean9270 5 років тому

      @@drpeyam Well since the story is set in the future, could be. Maybe this is how it starts :-S

  • @truthteller3978
    @truthteller3978 5 років тому +4

    Haha good method I like it 😂

  • @chandankar5032
    @chandankar5032 5 років тому

    Does tylor series of every function has radius of convergence as infinity ?

    • @lorenzolevy4708
      @lorenzolevy4708 5 років тому

      No

    • @chandankar5032
      @chandankar5032 5 років тому

      @@lorenzolevy4708 give some example

    • @jamesa8533
      @jamesa8533 5 років тому

      @@chandankar5032 the Taylor series of ln(1+X) around 0 has radius of convergence 1

    • @jmidski5753
      @jmidski5753 5 років тому +2

      Not all taylor series have a radius at infinity. It's dependent on the distance from your point and the nearest essential singularity in the complex plane. so like the geometric series has a radius of convergence = 1 because 1/(1-x) has a singularity at z=1 -- so you can only be sure that it converges for values of |z|

    • @michelkhoury1470
      @michelkhoury1470 5 років тому

      No for example arctan(x) has a radius of convergence equal to 1

  • @soumyasundar2
    @soumyasundar2 5 років тому

    Evaluate: integration of log sinx dx
    (Indefinite integration)

  • @holyshit922
    @holyshit922 5 років тому

    erf , Gamma, Can be expressed as series

  • @daizhao4874
    @daizhao4874 5 років тому

    Coooool! Really interesting and helpful video! By the way. I like your coat! I hope I can get it :D

  • @i_am_anxious02
    @i_am_anxious02 5 років тому

    Amazing!

  • @BraidenRobson
    @BraidenRobson 4 роки тому

    why does (-x^2)^n = (-1)^n*x^(2n)?

    • @BraidenRobson
      @BraidenRobson 4 роки тому

      nvm it's because (-x^2)^n = (-1*x^2)^n = (-1)^n*(x^2)^n = (-1)^n*x^(2n)

  • @magnifiedmicrons
    @magnifiedmicrons 3 роки тому

    Great... 👍👍👍👍

  • @sayanmaji2845
    @sayanmaji2845 5 років тому +1

    Super ....

  • @mathalysisworld
    @mathalysisworld 11 місяців тому

    Its quite the same as beta gamma function way

  • @e_ducationally
    @e_ducationally 5 років тому

    that is with (changement de variable)

  • @daizhao4874
    @daizhao4874 5 років тому

    I see this video again. Really cooooool again!

  • @sayanmaji2845
    @sayanmaji2845 5 років тому +1

    Thanks....

  • @ssdd9911
    @ssdd9911 5 років тому

    but why is C=0?

  • @zoedesvl4131
    @zoedesvl4131 5 років тому

    Using the Gamma and Beta function to find the result.

    • @drpeyam
      @drpeyam  5 років тому +1

      Yeah, check out my playlist

  • @frozenmoon998
    @frozenmoon998 5 років тому

    Nothing is impossible. We can rather say everything is Peyam Possible (small reference to Kim Possible, the series).

  • @shayanmoosavi9139
    @shayanmoosavi9139 5 років тому

    So you can use power series even for integrals? Wow.

  • @YUNGTHREESIX
    @YUNGTHREESIX 5 років тому

    But that a serie of taylor this is easy?

  • @maaoumarouane51
    @maaoumarouane51 5 років тому

    We can't permute sum and integral like this we should verify some conditions

    • @drpeyam
      @drpeyam  5 років тому

      Well, things are smooth and decay very quickly to 0, so not a problem at all

    • @drpeyam
      @drpeyam  5 років тому

      Technically use dominated convergence on (1,infty) because exp(-x^2)

    • @maaoumarouane51
      @maaoumarouane51 5 років тому

      We should use theorem integral term to term to verify and I think that verify it

    • @drpeyam
      @drpeyam  5 років тому +1

      But that’s what I did

  • @neilgerace355
    @neilgerace355 5 років тому +1

    So this is like solution XIII

  • @Gillespie28
    @Gillespie28 5 років тому +1

    I want that jacket

  • @danilov114
    @danilov114 5 років тому +1

    So if you come in this clothes like this to exam.. what will happen? Naked? Gone? Selfie with lecturer?

  • @FBWUniverseMode
    @FBWUniverseMode 4 роки тому

    Tell me I didn't just see this

  • @FunctionalIntegral
    @FunctionalIntegral 5 років тому

    Newton or Leibniz invented calculus? Most of the calculus we use today originates from Leibniz.

    • @drpeyam
      @drpeyam  5 років тому

      Yeah, there’s this debate on who invented calculus first

  • @KahlieNiven
    @KahlieNiven 5 років тому

    ....or you can use (e(u))' = u' e(u)

  • @Arup497
    @Arup497 5 років тому

    nice

  • @Aviationlover-belugaxl
    @Aviationlover-belugaxl 5 років тому

    0:43 NO LEIBNIZ DID TOO AND BETTER THAN NEWTON! Lol

  • @snipingcod9835
    @snipingcod9835 5 років тому

    1/sqrt(pi) easy

  • @chibigato3x311
    @chibigato3x311 5 років тому

    Final inesperado, UwU
    Hubiera sido más inesperado hacerle algo a la integral para que diera un resultado complejo.

  • @auliaanggraini7661
    @auliaanggraini7661 3 роки тому

    makasihh bangett, tapi masih belm pahammmm:(

  • @rtiripshi4432
    @rtiripshi4432 4 роки тому

    I AM = PEYAM!

  • @mohammedkhalaf3434
    @mohammedkhalaf3434 3 роки тому

    3! Not 6!

  • @xxgoku7774
    @xxgoku7774 4 роки тому

    wow

  • @ac7thed3mon
    @ac7thed3mon 5 років тому +2

    it's 2019, we all kind of know how to solve this..

    • @ac7thed3mon
      @ac7thed3mon 5 років тому

      @@ShiaServant I mean come on, there are hundreds of videos about this. This is literally the simplest thing you learn in first year of university, this is your curiosity in high school, and you find the answer in uni. But it's not even that complicated. I just hate this guy makes a pointless video about it when there are tons already.

  • @timka3244
    @timka3244 5 років тому

    Awesome, 187 likes, 0 dislikes

    • @drpeyam
      @drpeyam  5 років тому

      Not anymore 😢

    • @timka3244
      @timka3244 5 років тому

      Yes, 😢😢

  • @ZringAcademy
    @ZringAcademy 3 роки тому

    چ بەشەری ئەتوو

  • @worldstu.
    @worldstu. 5 років тому

    Good forgot password

  • @amansinghchauhan8644
    @amansinghchauhan8644 4 роки тому

    Are you indian

  • @timka3244
    @timka3244 5 років тому

    Who disliked the video? Undislike!!!!

  • @senatanrver6083
    @senatanrver6083 5 років тому

    √π

  • @asusmctablet9180
    @asusmctablet9180 5 років тому

    This is just a Gaussian. All you have to do is the polar sub trick.

    • @drpeyam
      @drpeyam  5 років тому +1

      And 12 other tricks, check out my playlist

  • @timka3244
    @timka3244 5 років тому

    Oh no 10 dislikes

  • @andrekpl7668
    @andrekpl7668 5 років тому

    😂😂 Yhep

  • @abibuagjudymar8572
    @abibuagjudymar8572 5 років тому

    Bonjing

  • @legendaryaviation8857
    @legendaryaviation8857 4 роки тому

    100th dislike!!! yaay

    • @drpeyam
      @drpeyam  4 роки тому

      lol, I ain’t even mad