Integral of so many things! (great for calculus 2 review)

Поділитися
Вставка
  • Опубліковано 12 січ 2018
  • I will just call this "THE CALC2 REVIEW" since this involves sooooo many skills from calc 2. I integrate a power series, did integration by parts (with the DI method, of course), used the L'Hoptial's Rule, Partial fractions, saw a telescoping series, and ended up with some pi^2/6.
    this explains "build up the power" part: • This is how we partial...
    integral of ln(x)/(x-1), also uses series, • integral of ln(x)/(x-1... ,
    sum of the reciprocals of squares,
    by Max. Z: • Proof by intuition don... ,
    by Dr. Peyam: • Video ,
    And here's the Fubini's Theorem, en.wikipedia.org/wiki/Fubini%... . In fact I made a mistaking quoting it to switch the integration and the summation. We can switch the integration and the summation because of the power series is uniformly convergent. Thus, the integral of the sum is the sum of the integrals, even with infinitely many terms.
    ENJOY THIS RIDE!
    Integral of ln(x)*ln(1-x) from 0 to 1,
    blackpenredpen,
    Math for fun,

КОМЕНТАРІ • 355

  • @BigDBrian
    @BigDBrian 6 років тому +684

    trying to solve it by symmetry with a u-sub of u=1-x lets you conclude that the integral is exactly equal to itself. Amazing.

    • @Jordan-zk2wd
      @Jordan-zk2wd 5 років тому +25

      @@TejasKd221B You forgot to distribute a negative sign, I did the same.

    • @Erik20766
      @Erik20766 5 років тому +16

      Tejas Acharya wtf, it's easy to see that's wrong. Both of the factors are negative in the interval so the product is positive hence the integral also is

    • @rayquaza1vs1deoxys
      @rayquaza1vs1deoxys 5 років тому +41

      #horseshoemaths

    • @darkseid856
      @darkseid856 4 роки тому +2

      @@rayquaza1vs1deoxys I remember that meme. Lmao

    • @Walczyk
      @Walczyk 3 роки тому +2

      huh i got the integral of ln(u)*ln(-u) when i let x --> x-1/2

  • @GueVonez
    @GueVonez 6 років тому +346

    I would start by looking at it and doing a U sub. Then cry and go to sleep

    • @General12th
      @General12th 6 років тому +86

      The derivative of sadness with respect to frustration is failure.

    • @asusmctablet9180
      @asusmctablet9180 5 років тому +8

      I changed one of the xes to a y, and did a double integral dxdy like the way you'd integrate the normal function. I got the same answer. Took like 2 minutes.

    • @zephyrred3366
      @zephyrred3366 4 роки тому +2

      wait, thats illegal!

    • @obamabinladen2206
      @obamabinladen2206 4 роки тому +4

      No u.

  • @andrewcollins4193
    @andrewcollins4193 6 років тому +119

    This was the best thing I've ever seen

  • @alkankondo89
    @alkankondo89 6 років тому +163

    An integration marathon! I love examples like this that demonstrate several different methods of problem-solving. Well done, sir!!

    • @blackpenredpen
      @blackpenredpen  6 років тому +10

      alkankondo89 my pleasure!

    • @6612770
      @6612770 6 років тому +10

      Agree totally! Problems like this are what helps to keep your mental agility on the ball!

    • @alkankondo89
      @alkankondo89 6 років тому +3

      Thanks! By the way, does your username have any kind of mathematical significance?

  • @tiagonewton4782
    @tiagonewton4782 6 років тому +149

    "DONE!!"

  • @roccocuffaro7569
    @roccocuffaro7569 6 років тому +45

    Wow awesome result, this is why maths makes me happy, integral of logs multiplied together - final answer has pi in it

  • @ralfbodemann1542
    @ralfbodemann1542 6 років тому +27

    Excellent job!
    Much appreciated you allowed us to witness the ongoing exhaustion and lack of concentration without covering it up by jump cuts etc. This shows that maths is sometimes real work. But you can still succeed in the end, if you don't give up.

    • @blackpenredpen
      @blackpenredpen  6 років тому +9

      Thank you for your comment!!
      It's kinda tricky. I have edited many of my videos previously mainly to shorten them with a hope that more people would like to click on it and watch it. Right now I am trying just the raw files to see how my viewers react to them. I thank you for your input!

  • @Craznar
    @Craznar 6 років тому +186

    The two most complex things in the universe:
    A: The meaning of life the universe and everything = 42
    B: The value of the above integral = 2 - π²/6

    • @BigDBrian
      @BigDBrian 6 років тому +52

      the most complex thing in the universe is none other than i.

    • @papsanlysenko5232
      @papsanlysenko5232 6 років тому +19

      Hey man, may I ask you a stupid question? Where did you get pi and ^2 on the keyboard?

    • @Craznar
      @Craznar 6 років тому +11

      I got them from google and cut and paste :)

    • @papsanlysenko5232
      @papsanlysenko5232 6 років тому +2

      Thanks, man

    • @imanharrisidham8971
      @imanharrisidham8971 6 років тому +3

      mrBorkD that sounds like a girl would say: bcs girls are just so confusing O.o

  • @shounenda4291
    @shounenda4291 6 років тому

    this is seriously one of your best vids! i love it, keep up the good work, you seriously are one of my favourites youtubers man!

  • @Moi-be1lo
    @Moi-be1lo 5 років тому +7

    This video has to be my favorite one yet. Thanks for making math enjoyable for all 😁

  • @Mqxwell
    @Mqxwell 5 років тому

    Absolutely amazing! Loved the video, thank you for showing such great math alongside such great work.

  • @nikitakipriyanov7260
    @nikitakipriyanov7260 3 роки тому +10

    After hearing the idea of series expansion, I was able to solve till the end and achieved the same answer! Which is nice. I can't remember solving such definite integrals. The only such thing I clearly remember from the university is how to calculate the Euler integral.

  • @daemonguy2
    @daemonguy2 6 років тому +1

    Definitely do more vids like this where you include a bunch of techniques and explain them all briefly!

  • @MrQwefty
    @MrQwefty 6 років тому +71

    24:40 the best part

  • @Harlequin314159
    @Harlequin314159 6 років тому +20

    That was epic, excellent job!

  • @charankorrapati3638
    @charankorrapati3638 3 роки тому

    brilliantly done....hats off....what an idea especially using power series...I love the way you said "DONE"

  • @sergioh5515
    @sergioh5515 6 років тому

    Wow. Amazing integral. Beautiful answer to see that identity at the end. Truly awesome for anyone who enjoys calculus

  • @mohammadelsayed5715
    @mohammadelsayed5715 4 роки тому

    You’re just so cool , I really appreciate your work ... Keep on going ❤️

  • @atharvas4399
    @atharvas4399 6 років тому

    i love it when you do challenging problems. lately you have done a lot of easier problems. but great video!

  • @juliuscaesar9481
    @juliuscaesar9481 6 років тому +2

    This is so impressive and clever, an awesome video!

  • @donmoore7785
    @donmoore7785 4 роки тому

    I believe I like this about the most of all your integration videos. There are a lot of principles used here - which I last considered over three decades ago.

  • @VerSalieri
    @VerSalieri 6 років тому

    Great content as usual. I wasnt on best terms with Frobenius back in college, but this was great.

  • @arcannite6152
    @arcannite6152 6 років тому

    Hey bprp, I love your videos, really big fan! Hope that you can always post amazing videos like this. I recently learnt about the gamma function and I found that i factOREO is really hard to solve. Could you sometimes do a video on it? Love from Hong Kong

  • @osvaldomena1172
    @osvaldomena1172 6 років тому +97

    Ohh man this is so hardcore :/

    • @blackpenredpen
      @blackpenredpen  6 років тому +16

      Yea.....
      And I think people can see why this is a "calc2 review"

  • @mohdfm
    @mohdfm 6 років тому +6

    Watched this at 7 am in the morning. Made my day😍😍🔥🔥🔥🔥🔥

  • @yo-no9879
    @yo-no9879 4 роки тому

    I can't believe you've done it, I'm actually interested in calc for the first time in my life.

  • @atomix1093
    @atomix1093 6 років тому

    This might just be one of my favorite integrals that I've seen solved

  • @TheMauror22
    @TheMauror22 6 років тому +3

    Beautiful video!!

  • @darcash1738
    @darcash1738 9 місяців тому

    Wow, this was a crazy combo of concepts. First, reverse engineering that series expansion from the derivative of ln(1-x), flipping the order to make em both under the integrand to do IBP, L'Hop shenanigans, and partial fractions to telescope and famous result the way to an answer. I just saw that one video where you proved the pi^2/6 series, so that was pretty cool.

  • @PunmasterSTP
    @PunmasterSTP Рік тому

    Damn, that was a great series of things you did on the board 😎

  • @soutiroy1754
    @soutiroy1754 4 роки тому

    Till now that is the most beautiful integration I have ever seen.

  • @azmath2059
    @azmath2059 6 років тому

    Now that was sensational! Who would have thought that the answer would simplify down to 2 - pi^2/6 , and using Euler.

  • @Grassmpl
    @Grassmpl 3 роки тому +1

    Please note. Fubini is exchanging the order of 2 nested integrals. Exchanging infinite sum with integral requires Lebesgue dominated convergence theorem.

  • @wellbangok8959
    @wellbangok8959 6 років тому +5

    I see "calc 2 review" in my recommended, and instantly start having flashbacks.

  • @jcnot9712
    @jcnot9712 4 роки тому

    I dropped a like just as a token of appreciation for the few microseconds you were begging for death through that 25 minutes. I salute you.

  • @sergiokorochinsky49
    @sergiokorochinsky49 6 років тому +28

    I used this method to solve your previous video's integral
    Ln(1+x)/(1+x^2).
    Compared to your trig substitution and FlamMath parametric method, plugging a series felt like brut force, but interesting things happened...

  • @user-vm6qx2tu3j
    @user-vm6qx2tu3j 6 років тому

    Didn't get formal education for this level of math! But I love this! Had to watch two times to understand properly😍

  • @cicciobombo7496
    @cicciobombo7496 6 років тому +33

    👏calc 2👏review👏

  • @adamkangoroo8475
    @adamkangoroo8475 6 років тому +1

    Holy oreo! Such twisted integral.. I'm stunned.

  • @Zonnymaka
    @Zonnymaka 6 років тому +2

    Mind blowing! Very nice, B-Pen....Euler is smiling right now

    • @Zonnymaka
      @Zonnymaka 6 років тому +1

      BTW, i solved it in a different way as usual :)
      I'm not really going to write each and every step tho!
      Anyway, i used integration by parts on the main integral. After 3 (fun) limits and another integration by parts and one u-sub i came up with:
      INT [ln(x)*ln(1-x)] = 2- INT [ln(1-x)/x] (all INT from 0 to 1 of course)
      Finally it was quite straightforward to solve the last INT with the power serie.
      A very challenging problem indeed!

    • @blackpenredpen
      @blackpenredpen  6 років тому

      Yay!!! Thank you for your nice comment!! I am smiling now too!!!!!

  • @yoyoland369
    @yoyoland369 6 років тому +66

    just finished calc 3... Imma still watch it for funsies

    • @blackpenredpen
      @blackpenredpen  6 років тому +9

      Yay!

    • @General12th
      @General12th 6 років тому +4

      Calc 3 was so much fun. I thought it was even more fun than Calc 1 and Calc 2!

  • @begatbegat7273
    @begatbegat7273 5 років тому

    I enjoyed the journey this took me through

  • @Dharmarajan-ct5ld
    @Dharmarajan-ct5ld Рік тому

    I like your presentation and content

  • @omarsamraxyz
    @omarsamraxyz 4 роки тому +1

    Bro the most unexpected result wtf!! Math is really dark magic... And logic ofc🔥❤️🔥

  • @RedRad1990
    @RedRad1990 4 роки тому

    Good job, you deserve a beer ;)
    Seriously, you looked like you needed to unwind :)

  • @jeffreyluciana8711
    @jeffreyluciana8711 4 роки тому +1

    I'm addicted to this channel

  • @herowise6021
    @herowise6021 6 років тому +1

    Hey can you go through Calc 1 - beyond, your vids are amazing

  • @aegisistatic8329
    @aegisistatic8329 6 років тому +11

    曹老師你的鬍子好有型啊
    Btw this one is pretty insane

  • @MusicalInquisit
    @MusicalInquisit 4 роки тому +5

    I guess this is why teachers give 5 hours to do 4 problems. LMAO!
    Don't understand any of this, but I enjoyed watching it.
    EDIT: Now that I have partially finished AP Calculus AB, I sort of understand what you are doing now.

  • @alanturingtesla
    @alanturingtesla 6 років тому +1

    Very interesting!

  • @alessandro.calzavara
    @alessandro.calzavara 3 роки тому

    Best math video I saw so far!

  • @deepakjindal9874
    @deepakjindal9874 6 років тому +12

    I have also done by power series i.e. taylor series of ln (1-x) to get the same answer!!!!!

  • @anon8109
    @anon8109 6 років тому

    We can roughly approximate the function y = ln(x)*ln(1-x) by a semicircle.
    The graph of the function looks like the top half of a circle with center 1/2 and radius 1/2 with an area of 1/2 * pi * (1/2)^2 = pi/8
    In fact, if we multiply the semicircle by the constant C = (48-4*pi^2)/(3*pi) which is approximately 0.9, then this integral would have the same area as the semicircle.

  • @sandeepsantoriya822
    @sandeepsantoriya822 5 років тому +1

    Superb !!!!!!!

  • @l3igl2eaper
    @l3igl2eaper 6 років тому +6

    Pfft, I just did it in my head. Super easy!

  • @ramachandrab6552
    @ramachandrab6552 2 роки тому

    Good explanation sir

  • @TheBlueboyRuhan
    @TheBlueboyRuhan 5 років тому +3

    Can we get a Calc 3 review question like this in the future?

  • @tomatrix7525
    @tomatrix7525 3 роки тому

    Very impressive my friend

  • @_DD_15
    @_DD_15 4 роки тому +1

    Where do you find such integrals? This was fun!

  • @GooogleGoglee
    @GooogleGoglee 6 років тому +13

    Good job! Maybe I miss something, is it possible to make a video on that part of the partial fractions? I didn't well understand why you divided the fraction adding the terms (n+1) and (n+2)^2

    • @fly7thomas
      @fly7thomas 6 років тому +1

      Me to.

    • @blackpenredpen
      @blackpenredpen  6 років тому +5

      I made a video today on that. It will be up by Wed or so.

  • @ashkara8652
    @ashkara8652 5 років тому

    A true review indeed.

  • @alannrosas2543
    @alannrosas2543 4 роки тому

    How is the interchange of limiting operations at 7:06 justified? I’m pretty sure term-by-term integration is only valid for power series, and the integrand in the integral preceding 7:06 does not appear to be a power series. Am I overlooking something?

  • @vidvidramones5792
    @vidvidramones5792 4 роки тому

    This video feel like you fight hardess boss in RPG game. Excellent!

  • @absolutezero9874
    @absolutezero9874 5 років тому

    I want to ask.. why is 1/(n+1) constant such that you can take it out of the integral? Since there’s a range of values of n for the summation. Thank you

  • @meisamsadeghi7834
    @meisamsadeghi7834 10 місяців тому

    Beautiful.
    I think instead of using integration by part, it is possible to transform the integral to a gamma function with a change of variable y=-ln(x).

  • @NeilMaron
    @NeilMaron 6 років тому +10

    Brutal

  • @jeromesnail
    @jeromesnail 6 років тому +1

    Now, could we find another way to calculate this integral, and then deduce the famous result sum(1/n²) = π²/6? Some trig substitution maybe?

  • @jonathanolson772
    @jonathanolson772 6 років тому

    This video made me realize just how much I forgot of calc 2. Hopefully I don't need it too much in calc 3 and diff eq

  • @samirgago4874
    @samirgago4874 Рік тому

    Thanks!

  • @meisamsadeghi7834
    @meisamsadeghi7834 10 місяців тому

    Thank you.

  • @user-kk2zf5ng2v
    @user-kk2zf5ng2v 3 роки тому

    I'm just an fresh highschool student in Korean, and I have a quite interest in math..
    but thanks to your video, I quite likely understanded this video

  • @zsomborhajdu2181
    @zsomborhajdu2181 4 роки тому

    This integral is the convolution of ln(x) and ln(x) at 1. Thus, we can use Laplace-transform to calculate the integral, as the inverse Laplace-transform of the square of ln(x)'s Laplace-transform. I think this method is much easier.

  • @tharjun9447
    @tharjun9447 3 роки тому

    Great 👍👍👍💯

  • @MarcosRodriguez-qx4wr
    @MarcosRodriguez-qx4wr 2 роки тому

    Wow, I got a bit lost when you calculated the numerators of the series. I guess in engineering we don't learn how to solve series properly. May you recommend any book or source that I could use to gain insight into series' calculus.
    So great video anyway.

  • @wolfmanjacksaid
    @wolfmanjacksaid 4 роки тому

    a great source for integral solutions, including unique solutions and definite integral solutions is a book called the Table of Integrals, Series and Products by Gradshteyn and Rhyzhik

  • @jeevashanmugam7608
    @jeevashanmugam7608 5 років тому

    You truly are impressive

  • @nomchicky7515
    @nomchicky7515 6 років тому

    Hey love your videos, I have a problem which i think would be a cool video. It goes like this "find the real and imaginary parts of (sinx)^i, I have don't know how to do it! Keep up the great work

  • @OriginalSuschi
    @OriginalSuschi 4 роки тому

    Holy crap didn’t expect this to be the solution. And how did you find out the value for 1+1????

  • @Magic73805
    @Magic73805 6 років тому +3

    Thanks Sir

  • @MrANoN11m
    @MrANoN11m 6 років тому +3

    beautiful

  • @suneetiyer81
    @suneetiyer81 6 років тому +1

    Well, I have a question.
    I know that lim [x-> 0] ( x^x ) =1
    but, can I say that 0^0 =1 or is it indeterminate?

  • @justdusty9697
    @justdusty9697 5 років тому

    similar method but faster in my opinion: turn ln(1-x) into a series to get sum of 1/n the integral of x^nln(x)
    now name that integral I_n or something you can find a recurrence relation between I_n+1 and I_n
    (obviously since I_n keeps a constant sign it is not identically zero) by that you can deduce that I_n = -1/(n+1)^2
    going back to the initial result we get sum of 1/n*(n+1)^2
    then finally by decomposing we end up getting our result 2- pi^2 /6

  • @YogeshKumar-rf5ys
    @YogeshKumar-rf5ys 6 років тому

    Nice solution

  • @AbiRizky
    @AbiRizky 6 років тому +1

    I'm gonna take calculus 2 this semester, do you think they will give problems like this for tests? This thing is so hardcore..

  • @erazorheader
    @erazorheader 5 років тому +1

    I think I have found the easier way. First, notice that Ln(x) Ln(1 - x) = -0.5*((Ln(x) - Ln(1-x))^2 - Ln(x)^2 - Ln(1-x)^2). Integrals from the logs squared are trivial and one can take it by integration by parts e.g. \int_0^1 Ln(x)^2 dx = - \int_0^1 (x 2 Ln(x) /x ) dx = - 2 \int_0^1 Ln(x) dx = 2. Same answer is for the integral from Ln(1-x)^2. Somewhat tricky part is the integral from -0.5*(Ln(x) - Ln(1-x))^2 = -0.5*(Ln(x/(1-x)))^2 = -0.5 d^2(x^t (1 - x)^(-t))/dt^2 at t = 0. In the last line I used that Ln(x) = d(x^t)/dt taken at t = 0. As we have the second power of the log, we need the second derivative. But the integral \int_0^1 x^t (1 - x)^(-t) dx = pi*t/sin(pi*t) where I used the definition of the beta-function. In order to take the second derivative, notice that sin(z)/z = 1 - z^2/6 + ... i.e. z/sin(z) = 1 + z^2/6 +... As we only need the second derivative at zero argument, it is enough. So, we get \int_0^1 -0.5*(Ln(x) - Ln(1-x))^2 dx = -0.5* d^2(\int_0^1 x^t (1-x)^(-t) dx)/dt^2|(t=0) = -0.5 d^2(pi*t/sin(pi*t))/dt^2|(t = 0) = -0.5*pi^2/3 = -pi^2/6.

  • @PaulusFrank
    @PaulusFrank 6 років тому +1

    Drop the marker! Well done!

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 6 років тому +30

    No you only have to show why 1/1^2 + 1/2^2 + 1/3^2 + ... equals pi^2/6 :D

    • @blackpenredpen
      @blackpenredpen  6 років тому +20

      That would have been another 20 minutes.....
      I was trying so hard to fit everything on just one board and I was happy because I did it!
      *erasing the c=0 part doesn't count.

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 6 років тому +2

      I was joking anyway :D

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 6 років тому +8

      Ok, here is the deal. Whenever I write something serious in your comment section I explicitly say so :D

    • @materiasacra
      @materiasacra 6 років тому +1

      AndDiracisHisProphet : what about this comment itself?

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 6 років тому +1

      Good question

  • @holyshit922
    @holyshit922 2 роки тому

    Another approach
    Substitute t = -ln(x)
    Calculate Laplace transform of ln(1-e^{-t})
    Use derivative of original formula L(tf(t)) = -d/ds F(s) where F(s) is Laplace transform of f(t)
    Plug in s = 1

  • @NeonArtzMotionDesigns
    @NeonArtzMotionDesigns 4 роки тому

    I now desire u as my calc 2 teacher this semester

  • @avalons2170
    @avalons2170 6 років тому

    Hi . Look at this : SUM 1/ [n*(n+1)^2] from n=1 to inf is [ 2 - pi^2/6 ] just the same result you have found.

  • @sokhuonguon6117
    @sokhuonguon6117 6 років тому

    BpRp,I want to know about connection of limit to integral .
    Please,make videos and explain about this section.
    Thanks. .

  • @richie2333
    @richie2333 Рік тому

    Can this integral be done by transforming it into a double integral?

  • @factsandfigure7025
    @factsandfigure7025 4 роки тому

    The 1st thing, if it strikes in your mind then question is simple and if it doesn't then it is really hard to solve it.

  • @holyshit922
    @holyshit922 11 місяців тому

    If we integrate by parts first we can use geometric series expansion

  • @thephysicistcuber175
    @thephysicistcuber175 6 років тому

    such a weird answer, how the heck did we end up with pi^2/6 from the integral of a product of logs?
    also, nice power series there

  • @0x8055
    @0x8055 6 років тому +1

    great job!!!! that one was hard hehe

    • @shanmugasundaram9688
      @shanmugasundaram9688 6 років тому

      Very interesting. Please do integral 0 to infinity e power minus x squared lnx. dx. Thank you.

  • @richardbraakman7469
    @richardbraakman7469 Рік тому

    I would have been so tempted to get rid of all the n+1 by making n start at 1 instead

  • @jonathanm9545
    @jonathanm9545 6 років тому

    Could u solve it using Laplace transforms

  • @mathisnotforthefaintofheart
    @mathisnotforthefaintofheart 2 роки тому

    I don't think this problem falls within the Calculus 2 scope though. But it has a lot of Calculus 2 elements in it, that's for sure. I remember I did problems like "replacing integrals by series vice-versa" in a introductory real analysis class....

  • @P4ExHzLRuuiFMg3X4U3v
    @P4ExHzLRuuiFMg3X4U3v 6 років тому +4

    You lost me at 18:01 with the "cover-up" method... By imposing n=-1 you are making the fraction tend to infinity, how would that help us find A? Plus, when I try to determine A,B and C with the "usual" method (writing the common denominator of the three partial fractions and comparing to the original fraction to determine A,B,C) I find a system of 4 equations in 3 unknowns, which turns out to have no solutions. What am I missing??

    • @khalilbouhmouch4437
      @khalilbouhmouch4437 5 років тому

      Filippo Malgarini before imposing n=-1 he multiples everything by n+1 thats a known method to decompose franctions