A Very Nice Math Olympiad Problem | Solve for All Values of x? | Algebra

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 19

  • @PopescuVicentiu
    @PopescuVicentiu 6 днів тому

    More simple:
    (x/2)^6=3^6, (x*1/2)^6=(1/2)^6 * (x)^6
    (x)^6=[3^6/(1/2)^6]
    (x)^6=[3^6 * 2^6]= (3*2)^6
    x1,2=+-6.

  • @maysounhejazy7056
    @maysounhejazy7056 15 днів тому

    Amazing

  • @shannonmcdonald7584
    @shannonmcdonald7584 22 дні тому

    Thus is a good one. Not too easy and not too hard. Plus, whenever a difference of squares gives you a sum of cubes and a difference of cubes as its factors, there is a little symmetry on the page.
    Very nice yet again!

  • @maysounhejazy7056
    @maysounhejazy7056 15 днів тому

    Can i ask about the graphic tablet and the app which you use

  • @raghvendrasingh1289
    @raghvendrasingh1289 22 дні тому +1

    We put x= 6t then
    t^6-1= 0
    (t^3-1)(t^3+1) = 0
    (t-1)(t+1) (t^2+t+1)(t^2-t+1) = 0
    t= 1, - 1
    x = 6 - 6 ( real roots)
    for imaginary roots we will use quadratic formula on other two and then use x= 6t

  • @wes9627
    @wes9627 22 дні тому +2

    x_j=6[cos(jπ/3)+i*sin(jπ/3)],j=0,1,...,5 whee i=√(-1)

  • @walterwen2975
    @walterwen2975 21 день тому +1

    Math Olympiad Problem: (x/2)⁶ = 3⁶; x =?
    First method:
    (x/2)⁶ = 3⁶ = (6/2)⁶ = [(± 6)/2]⁶; x = ± 6, Missing four complex value roots, if available
    Second method;
    [(x/2)⁶](2⁶) = (3⁶)(2⁶), x⁶ = 6⁶, x⁶ - 6⁶ = (x³)² - (6³)² = (x³ - 6³)(x³ + 6³) = 0
    (x - 6)(x² + 6x + 36)(x + 6)(x² - 6x + 36) = 0
    x - 6 = 0, x = 6; x + 6 = 0, x = - 6; x² - 6x + 36 = 0 or x² + 6x + 36 = 0
    (x - 3)² = - 27 = (3i√3)², x = 3 ± 3i√3 or (x + 3)² = (3i√3)², x = - 3 ± 3i√3
    Answer check:
    x = ± 6: (x/2)⁶ = (± 6/2)⁶ = 3⁶; Confirmed
    x = 3 ± 3i√3 = 3(1 ± i√3): (x/2)² = [3(1 ± i√3)/2]² = (9/2)(- 1 ± i√3)
    (x/2)³ = (x/2)²(x/2) = [(9/2)(- 1 ± i√3)][(3/2)(1 + i√3)] = (3³/4)(- 1 - 3) = - 3³
    (x/2)⁶ = [(x/2)³]² = (- 3³)² = 3⁶; Confirmed
    x = - 3 ± 3i√3 = 3(- 1 ± i√3): (x/2)² = [3(- 1 ± i√3)/2]² = (- 9/2)(1 ± i√3)
    (x/2)³ = (x/2)²(x/2) = [(- 9/2)(1 ± i√3)][(3/2)(- 1 ± i√3)] = (- 3³/4)(- 1 - 3) = 3³
    (x/2)⁶ = [(x/2)³]² = (3³)² = 3⁶; Confirmed
    Final answer:
    x = 6; x = - 6; Four complex value roots, if acceptable;
    x = 3 + 3i√3; x = 3 - 3i√3; x = - 3 + 3i√3 or x = - 3 - 3i√3

  • @touratiaziz5059
    @touratiaziz5059 22 дні тому

    Thank you

  • @starblox0983
    @starblox0983 22 дні тому +2

    Wow I wouldve thought since (x/2) = +- 3 --> x = 6, -6.

  • @शर्मादिलकुशशर्मादिलखुशजगदीशचं

    Bro why are you over compleicating
    (x/2)⁶=3⁶
    = ⁶√(x/2)⁶=⁶√3⁶
    =x/2=3
    =x=3×2
    =X=6

    • @SpencersAcademy
      @SpencersAcademy  21 день тому

      Nice one! The degree of the equation is 6, so you need 5 more values of x. You've only got one.

  • @akmmonirulislam3961
    @akmmonirulislam3961 21 день тому

    (x/2)^6 = 3^6
    or ((x/2)^6)^1/6 = (3^6)^2/6
    or x/2 = 3
    or x = 6 ans.
    Please keep it simple.

    • @SpencersAcademy
      @SpencersAcademy  21 день тому

      Weldone! The degree of the equation is 6. So you need 4 more solutions of x.