A Very Nice Math Olympiad Problem | Solve for real value of x for which x^30+x^20=80

Поділитися
Вставка
  • Опубліковано 24 лис 2024

КОМЕНТАРІ • 8

  • @GurnoorSingh-vx2nq
    @GurnoorSingh-vx2nq Місяць тому +3

    this was an Olympiad prob???

  • @michaeledwards2251
    @michaeledwards2251 Місяць тому +3

    Somebody loves 64 + 16 = 80. (x^10)^3 + (x^10)^2 = 80. Initially x^10 = 4, giving x = 2^(1/5) with another 9 roots to find.

    • @RobertKvsv
      @RobertKvsv Місяць тому

      Explain?

    • @michaeledwards2251
      @michaeledwards2251 Місяць тому

      @@RobertKvsv
      Positive and Negative, and Complex, roots which raised to the 10th power evaluate to 4.

  • @sy8146
    @sy8146 Місяць тому

    I would like to show the 2 points as follows:
    1) There is another solution: x = - (4^(1/10)) [ There are 2 real solutions. ]
    2) As for writing the final answer, 2^(1/5) is better than 4^(1/10) .
    Therefore, my final answer is x = ± 2^(1/5) .
    >

  • @mikeeisler6463
    @mikeeisler6463 Місяць тому +1

    2 problems
    1. 4^(1/10) isn’t simplest form
    4^(1/10)
    = (2^2)^(1/10)
    = 2^(2/10)
    = 2^(1/5)
    2. There are 2 real solutions:
    x^10 = 4
    x^10 - 4 = 0
    (x^5)^2 - 2^2 = 0
    Difference of squares
    (x^5 - 2)(x^5 + 2) = 0
    x = +- 2^(1/5)

  • @Berries1111_
    @Berries1111_ Місяць тому

    Or 10th root 4