A Very Nice Math Olympiad Problem | Can You Solve for x? | Algebra | Radical equation

Поділитися
Вставка
  • Опубліковано 14 лис 2024

КОМЕНТАРІ • 18

  • @SpencersAcademy
    @SpencersAcademy  2 дні тому +4

    Notice that on checking, x=1 does not satisfy the equation. Therefore, there are only two solutions: x=0 and x=4

  • @captainteach007
    @captainteach007 2 дні тому

    You don't mention how you calculated the decomposition of 6x^2 and 9x - to achieve the factorisation ...

  • @stevendebettencourt7651
    @stevendebettencourt7651 2 дні тому +1

    When you square to solve, you need to check your solutions with the original equation. The x=1 solution does not work, but x=0 and x=4 do.

    • @SpencersAcademy
      @SpencersAcademy  2 дні тому

      Yeah. Absolutely ❤

    • @dusanpokorny329
      @dusanpokorny329 День тому

      Ano. Umocňování není ekvivalentní úprava rovnic a zde se provádí 2x. Ve výsledku se mohou objevit "falešné kořeny" zde dvojnásobně x=1. Zkouška u těchto iracionálních rovnic je povinná.

  • @Sitthijack
    @Sitthijack День тому

    Thank you

  • @key_board_x
    @key_board_x 3 дні тому +2

    x = √[3x + √(4x)] → where: x ≥ 0 ← we can see that: x = 0 is a solution
    x² = 3x + √(4x)
    x² - 3x = √(4x)
    (x² - 3x)² = 4x
    x⁴ - 6x³ + 9x² = 4x
    x⁴ - 6x³ + 9x² - 4x = 0
    x.(x³ - 6x² + 9x - 4) = 0
    First case: x = 0
    Second case: (x³ - 6x² + 9x - 4) = 0
    x³ - 6x² + 9x - 4 = 0
    x³ + 9x - 6x² - 4 = 0
    (x³ + 9x) - (6x² + 4) = 0 ← we can see here that: (x = 1) is a solution, so we can factorize (x - 1)
    x³ - 6x² + 9x - 4 = 0 → you factorize (x - 1)
    (x - 1).(x² + βx + 4) = 0 → you expand
    x³ + βx² + 4x - x² - βx - 4 = 0 → you group
    x³ + x².(β - 1) + x.(4 - β) - 4 = 0 → you compare with: x³ - 6x² + 9x - 4 = 0
    For x² → (β - 1) = - 6 → β = - 5
    For x → (4 - β) = 9 → β = - 5
    (x - 1).(x² + βx + 4) = 0 → where: β = - 5
    (x - 1).(x² - 5x + 4) = 0 → then we solve for x the equation:
    x² - 5x + 4 = 0
    Δ = (- 5)² - (4 * 4) = 25 - 16 = 9
    x = (5 ± 3)/2
    x = 4 or x = 1
    Summarize:
    x = √[3x + √(4x)]
    x.(x³ - 6x² + 9x - 4) = 0
    x.(x - 1).(x² - 5x + 4) = 0
    x.(x - 1).(x - 4).(x - 1) = 0
    x.(x - 1)².(x - 4) = 0
    Solution = { 0 ; 1 ; 4 }
    x = √[3x + √(4x)] → when: x = 0
    0 = 0 ← true
    x = √[3x + √(4x)] → when: x = 1
    1 = √[3 + √(4)]
    1 = √[3 + 2]
    1 = √5 ← false ← 1 rejected
    x = √[3x + √(4x)] → when: x = 4
    4 = √[12 + √(16)]
    4 = √[12 + 4]
    4 = √16
    4 = 4 ← true
    Solution = { 0 ; 4 }

  • @SGuerra
    @SGuerra 2 дні тому

    A questão é das boas. Parabéns pela escolha. Brasil Novembro de 2024.

  • @davidshen5916
    @davidshen5916 День тому

    Let Y=4X+Sqrt(4X), Y-X=3X+Sqrt(4X), X=Sqrt(Y-X),X^2=Y-X, (Y-4X)^2=4X, (X+Y-4X)(X-Y+4X)=Y-5X, (5X-Y)(Y-3X+1)=0, Y=5X,X^2=4X,X=0,X=4,Y=3X-1,X^2=2X-1, X=1

  • @msconsult3705
    @msconsult3705 3 дні тому +1

    Only 2 solutions: x=0 x=4

  • @karimMalim-k6e
    @karimMalim-k6e 2 дні тому +1

    Number 1 IS not solution