Can you solve this? | iota maths problem | Oxford entrance exam question

Поділитися
Вставка
  • Опубліковано 30 жов 2024

КОМЕНТАРІ • 8

  • @renesperb
    @renesperb 2 дні тому

    If you consider the complex z-plane the answer is immediately clear : for the 1/3 -power you have to divide the corresponding
    angle by 3: π/2 * 1/3 = π/6 :hence the answer is cos π/6 +i*sin π/6 =1/2*(√3 + i). In your video you give the solution of z^3 = i,
    but the third root is uniquely defined, as the solution given here.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 27 днів тому

    {i+i+ii ➖ i ➖ i}=i^3 (x➖ 3ix+3i).

  • @DJCray8472
    @DJCray8472 27 днів тому

    i=e^(i*Pi/2+k*2*Pi) k=0; +/-1; +/-2; ... -> 3rd-root(i)=e^(i*Pi/6 + k*2*Pi/3); k=0 -> sqrt(3)/2 + i/2; k=1 -> -sqrt(3)/2 +i/2; k=2 -> -i; k=3 is the same result for k=0; k=4 results the same as k=1; Knowledge to solve: e^(ix) = cos(x) + i*sin(x) and sin(30°)=1/2; sin(60°)=sqrt(3)/2=cos(30°) and x = Pi/6 is equavalent to 30°

  • @joseantoniovargasbazan5058
    @joseantoniovargasbazan5058 22 дні тому

    I'd rather use the De Moivre's formula.

  • @hakanerci4372
    @hakanerci4372 27 днів тому +1

    i³=-root-1 right

  • @payoo_2674
    @payoo_2674 27 днів тому

    ³√i = i^(1/3) = (e^((π/2+2kπ)*i))^(1/3) = e^((1+4k)πi/6) k ∈ Z
    for k=0: ³√i = e^(πi/6) = cos(π/6) + i*sin(π/6) = √3/2 + i*1/2 = (√3+i)/2
    for k=1: ³√i = e^(5πi/6) = cos(5π/6) + i*sin(5π/6) = -√3/2 + i*1/2 = (-√3+i)/2
    for k=2: ³√i = e^(9πi/6) = cos(3π/2) + i*sin(3π/2) = 0 + i*(-1) = -i